logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Computational Methods for Plasticity: Theory and Applications

Computational Methods for Plasticity: Theory and Applications (Hardcover)

EA de Souza Neto (지은이)
John Wiley & Sons Inc
398,640원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
326,880원 -18% 0원
16,350원
310,530원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Computational Methods for Plasticity: Theory and Applications
eBook 미리보기

책 정보

· 제목 : Computational Methods for Plasticity: Theory and Applications (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 역학 > 역학 일반
· ISBN : 9780470694527
· 쪽수 : 816쪽
· 출판일 : 2008-12-01

목차

Part One Basic concepts
1 Introduction
1.1 Aims and scope
1.2 Layout
1.3 General scheme of notation

2 ELEMENTS OF TENSOR ANALYSIS
2.1 Vectors
2.2 Second-order tensors
2.3 Higher-order tensors
2.4 Isotropic tensors
2.5 Differentiation
2.6 Linearisation of nonlinear problems

3 THERMODYNAMICS
3.1 Kinematics of deformation
3.2 Infinitesimal deformations
3.3 Forces. Stress Measures
3.4 Fundamental laws of thermodynamics
3.5 Constitutive theory
3.6 Weak equilibrium. The principle of virtual work
3.7 The quasi-static initial boundary value problem

4 The finite element method in quasi-static nonlinear solid mechanics
4.1 Displacement-based finite elements
4.2 Path-dependent materials. The incremental finite element procedure
4.3 Large strain formulation
4.4 Unstable equilibrium. The arc-length method

5 Overview of the program structure
5.1 Introduction
5.2 The main program
5.3 Data input and initialisation
5.4 The load incrementation loop. Overview
5.5 Material and element modularity
5.6 Elements. Implementation and management
5.7 Material models: implementation and management

Part Two Small strains
6 The mathematical theory of plasticity
6.1 Phenomenological aspects
6.2 One-dimensional constitutive model
6.3 General elastoplastic constitutive model
6.4 Classical yield criteria
6.5 Plastic flow rules
6.6 Hardening laws

7 Finite elements in small-strain plasticity problems
7.1 Preliminary implementation aspects
7.2 General numerical integration algorithm for elastoplastic constitutive equations
7.3 Application: integration algorithm for the isotropically hardening von Mises model
7.4 The consistent tangent modulus
7.5 Numerical examples with the von Mises model
7.6 Further application: the von Mises model with nonlinear mixed hardening

8 Computations with other basic plasticity models
8.1 The Tresca model
8.2 The Mohr-Coulomb model
8.3 The Drucker-Prager model
8.4 Examples

9 Plane stress plasticity
9.1 The basic plane stress plasticity problem
9.2 Plane stress constraint at the Gauss point level
9.3 Plane stress constraint at the structural level
9.4 Plane stress-projected plasticity models
9.5 Numerical examples
9.6 Other stress-constrained states

10 Advanced plasticity models
10.1 A modified Cam-Clay model for soils
10.2 A capped Drucker-Prager model for geomaterials
10.3 Anisotropic plasticity: the Hill, Hoffman and Barlat-Lian models

11 Viscoplasticity
11.1 Viscoplasticity: phenomenological aspects
11.2 One-dimensional viscoplasticity model
11.3 A von Mises-based multidimensional model
11.4 General viscoplastic constitutive model
11.5 General numerical framework
11.6 Application: computational implementation of a von Mises-based model
11.7 Examples

12 Damage mechanics
12.1 Physical aspects of internal damage in solids
12.2 Continuum damage mechanics
12.3 Lemaitre's elastoplastic damage theory
12.4 A simplified version of Lemaitre's model
12.5 Gurson's void growth model
12.6 Further issues in damage modelling

Part Three Large strains
13 Finite strain hyperelasticity
13.1 Hyperelasticity: basic concepts
13.2 Some particular models
13.3 Isotropic finite hyperelasticity in plane stress
13.4 Tangent moduli: the elasticity tensors
13.5 Application: Ogden material implementation
13.6 Numerical examples
13.7 Hyperelasticity with damage: the Mullins effect


14 Finite strain elastoplasticity
14.1 Finite strain elastoplasticity: a brief review
14.2 One-dimensional finite plasticity model
14.3 General hyperelastic-based multiplicative plasticity model
14.4 The general elastic predictor/return-mapping algorithm
14.5 The consistent spatial tangent modulus
14.6 Principal stress space-based implementation
14.7 Finite plasticity in plane stress
14.8 Finite viscoplasticity
14.9 Examples
14.10 Rate forms: hypoelastic-based plasticity models
14.11 Finite plasticity with kinematic hardening

15 Finite elements for large-strain incompressibility
15.1 The F-bar methodology
15.2 Enhanced assumed strain methods
15.3 Mixed u/p formulations

16 Anisotropic finite plasticity: Single crystals
16.1 Physical aspects
16.2 Plastic slip and the Schmid resolved shear stress
16.3 Single crystal simulation: a brief review
16.4 A general continuum model of single crystals
16.5 A general integration algorithm
16.6 An algorithm for a planar double-slip model
16.7 The consistent spatial tangent modulus
16.8 Numerical examples
16.9 Viscoplastic single crystals

Appendices
A Isotropic functions of a symmetric tensor
A.1 Isotropic scalar-valued functions
A.1.1 Representation
A.1.2 The derivative of anisotropic scalar function
A.2 Isotropic tensor-valued functions
A.2.1 Representation
A.2.2 The derivative of anisotropic tensor function
A.3 The two-dimensional case
A.3.1 Tensor function derivative
A.3.2 Plane strain and axisymmetric problems
A.4 The three-dimensional case
A.4.1 Function computation
A.4.2 Computation of the function derivative
A.5 A particular class of isotropic tensor functions
A.5.1 Two dimensions
A.5.2 Three dimensions
A.6 Alternative procedures

B The tensor exponential
B.1 The tensor exponential function
B.1.1 Some properties of the tensor exponential function
B.1.2 Computation of the tensor exponential function
B.2 The tensor exponential derivative
B.2.1 Computer implementation
B.3 Exponential map integrators
B.3.1 The generalised exponential map midpoint rule

C Linearisation of the virtual work
C.1 Infinitesimal deformations
C.2 Finite strains and deformations
C.2.1 Material description
C.2.2 Spatial description

D Array notation for computations with tensors
D.1 Second-order tensors
D.2 Fourth-order tensors
D.2.1 Operations with non-symmetric tensors

References
Index

저자소개

EA de Souza Neto (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책