logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Introduction to the Design and Analysis of Experiments

Introduction to the Design and Analysis of Experiments (Paperback)

Clarke, Geoffrey M. Clarke, Robert E. Kempson (지은이)
John Wiley & Sons
91,150원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
68,360원 -25% 0원
2,060원
66,300원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Introduction to the Design and Analysis of Experiments
eBook 미리보기

책 정보

· 제목 : Introduction to the Design and Analysis of Experiments (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 실험/프로젝트
· ISBN : 9780470711071
· 쪽수 : 354쪽
· 출판일 : 2010-05-24

목차

Preface.

1 Collecting data by experiments.

1.1 Introduction.

1.2 Experiments.

1.3 Measurements of yield or response.

1.4 Natural variation in data.

1.5 Initial data analysis.

1.6 General applications of experimentation.

1.7 Exercises.

2 Basic statistical methods: the normal distribution.

2.1 Statistical inference for one sample of normally distributed data.

2.2 Hypothesis test.

2.3 Comparison of two samples of normally distributed data.

2.4 The F-test for comparing two estimated variances.

2.5 Confidence interval for the difference between two means.

2.6 'Paired data' t-test when samples are not independent.

2.7 Linear functions of normally distributed variables.

2.8 Linear models including normal random variation.

2.9 Exercises.

3 Principles of experimental design.

3.1 Introduction.

3.2 Treatment structure.

3.3 Changing background conditions – the need for comparison.

3.4 Replication.

3.5 Randomization.

3.6 Blocking.

3.7 Sources of variation.

3.8 Planning the size of an experiment.

3.9 Exercises.

4 The analysis of data from orthogonal designs.

4.1 Introduction.

4.2 Comparing treatments.

4.3 Confidence intervals.

4.4 Homogeneity of variance.

4.5 The randomized complete block.

4.6 Duncan's multiple range test.

4.7 Extra replication of important treatments.

4.8 Contrasts among treatments.

4.9 Latin squares and other orthogonal designs.

4.10 Graeco-Latin squares.

4.11 Two fallacies.

4.12 Assumptions in analysis: using residuals to examine them.

4.13 Transformations.

4.14 Theory of variance stabilization.

4.15 Missing data in block designs.

4.16 Exercises.

Appendix 4A Cochran's Theorem on Quadratic Forms.

5 Factorial experiments.

5.1 Introduction.

5.2 Notation for factors at two levels.

5.3 Definition of main effect and interaction.

5.4 Three factors each at two levels.

5.5 A single factor at more than two levels.

5.6 General method for computing coefficients for orthogonal polynomials.

5.7 Exercises.

6 Experiments with many factors: confounding and fractional replication.

6.1 Introduction.

6.2 The principal block in confounding.

6.3 Single replicate.

6.4 Small experiments: partial confounding.

6.5 Very large experiments: fractional replication.

6.6 Replicates smaller than half size.

6.7 Confounding with fractional replication.

6.8 Confounding three-level factors.

6.9 Fractional replication in 3-level experiments.

6.10 Exercises.

Appendix 6A Methods of confounding in 2p factorial experiments.

7 Confounding main effects – split-plot designs.

7.1 Introduction.

7.2 Linear model and analysis.

7.3 Studying interactions.

7.4 Repeated splitting.

7.5 Confounding in split-plot experiments.

7.6 Other designs for main plots.

7.7 Criss-cross design.

7.8 Exercises.

8 Industrial experimentation.

8.1 Introduction.

8.2 Taguchi methods in statistical quality control.

8.3 Loss functions.

8.4 Sources of variation.

8.5 Orthogonal arrays.

8.6 Choice of design.

9 Response surfaces and mixture designs.

9.1 Introduction.

9.2 Are experimental conditions ‘constant’?

9.3 Response surfaces.

9.4 Experiments with three factors, x1, x2 and x3.

9.5 Second-order surfaces.

9.6 Contour diagrams in analysis.

9.7 Transformations.

9.8 Mixture designs.

9.9 Other types of response surface.

9.10 Exercises.

10 The analysis of covariance.

10.1 Introduction.

10.2 Analysis for a design in randomized blocks: general theory.

10.3 Individual contrasts.

10.4 Dummy covariance.

10.5 Systematic trend not removed by blocking.

10.6 Accidents in recording.

10.7 Assumptions in covariance analysis.

10.8 Missing values.

10.9 Double covariance.

10.10 Exercises.

11 Balanced incomplete blocks and general non-orthogonal block designs.

11.1 Introduction.

11.2 Definition and existence of a balanced incomplete block.

11.3 Methods of construction.

11.4 Linear model and analysis.

11.5 Row and column design: the Youden square.

11.6 General block designs.

11.7 Linear model and analysis.

11.8 Generalized inverse.

11.9 Application to designs with special patterns.

11.10 Exercises.

Appendix 11A Generalized inverse matrix by spectral decomposition.

Appendix 11B Natural contrasts and effective replication.

12 More advanced designs.

12.1 Introduction.

12.2 Crossover designs.

12.3 Lattices.

12.4 Alpha designs.

12.5 Partially balanced incomplete blocks (PBIBs).

13 Random effects models: variance components and sampling schemes.

13.1 Introduction.

13.2 Two stages of sampling: between and within units.

13.3 Assessing alternative sampling schemes.

13.4 Using variance components in planning when sampling costs are given.

13.5 Three levels of variation.

13.6 Costs in a three-stage scheme.

13.7 Example where one estimate is negative.

13.8 Exercises.

14 Computer output using SAS.

Bibliography and references.

Tables.

Index.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책