logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Generalized Least Squares

Generalized Least Squares (Hardcover)

Takeaki Kariya, Hiroshi Kurata (지은이)
John Wiley & Sons Inc
351,310원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
288,070원 -18% 0원
14,410원
273,660원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Generalized Least Squares
eBook 미리보기

책 정보

· 제목 : Generalized Least Squares (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780470866979
· 쪽수 : 312쪽
· 출판일 : 2004-07-23

목차

Preface.

1 Preliminaries.

1.1 Overview.

1.2 Multivariate Normal and Wishart Distributions.

1.3 Elliptically Symmetric Distributions.

1.4 Group Invariance.

1.5 Problems.

2 Generalized Least Squares Estimators.

2.1 Overview.

2.2 General Linear Regression Model.

2.3 Generalized Least Squares Estimators.

2.4 Finiteness of Moments and Typical GLSEs.

2.5 Empirical Example: CO2 Emission Data.

2.6 Empirical Example: Bond Price Data.

2.7 Problems.

3 Nonlinear Versions of the Gauss–Markov Theorem.

3.1 Overview.

3.2 Generalized Least Squares Predictors.

3.3 A Nonlinear Version of the Gauss–Markov Theorem in Prediction.

3.4 A Nonlinear Version of the Gauss–Markov Theorem in Estimation.

3.5 An Application to GLSEs with Iterated Residuals.

3.6 Problems.

4 SUR and Heteroscedastic Models.

4.1 Overview.

4.2 GLSEs with a Simple Covariance Structure.

4.3 Upper Bound for the Covariance Matrix of a GLSE.

4.4 Upper Bound Problem for the UZE in an SUR Model.

4.5 Upper Bound Problems for a GLSE in a Heteroscedastic Model.

4.6 Empirical Example: CO2 Emission Data.

4.7 Problems.

5 Serial Correlation Model.

5.1 Overview.

5.2 Upper Bound for the Risk Matrix of a GLSE.

5.3 Upper Bound Problem for a GLSE in the Anderson Model.

5.4 Upper Bound Problem for a GLSE in a Two-equation Heteroscedastic Model.

5.5 Empirical Example: Automobile Data.

5.6 Problems.

6 Normal Approximation.

6.1 Overview.

6.2 Uniform Bounds for Normal Approximations to the Probability Density Functions.

6.3 Uniform Bounds for Normal Approximations to the Cumulative Distribution Functions.

6.4 Problems.

7 Extension of Gauss–Markov Theorem.

7.1 Overview.

7.2 An Equivalence Relation on S(n).

7.3 A Maximal Extension of the Gauss–Markov Theorem.

7.4 Nonlinear Versions of the Gauss–Markov Theorem.

7.5 Problems.

8 Some Further Extensions.

8.1 Overview.

8.2 Concentration Inequalities for the Gauss–Markov Estimator.

8.3 Efficiency of GLSEs under Elliptical Symmetry.

8.4 Degeneracy of the Distributions of GLSEs.

8.5 Problems.

9 Growth Curve Model and GLSEs.

9.1 Overview.

9.2 Condition for the Identical Equality between the GME and the OLSE.

9.3 GLSEs and Nonlinear Version of the Gauss–Markov Theorem .

9.4 Analysis Based on a Canonical Form.

9.5 Efficiency of GLSEs.

9.6 Problems.

A. Appendix.

A.1 Asymptotic Equivalence of the Estimators of θ in the AR(1) Error Model and Anderson Model.

Bibliography.

Index.

저자소개

Takeaki Kariya (지은이)    정보 더보기
펼치기
Hiroshi Kurata (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책