logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Elements of Information Theory

Elements of Information Theory (Hardcover, 2)

Joy A. Thomas, T. M. Cover (지은이)
Wiley-Interscience
69,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
69,000원 -0% 0원
2,070원
66,930원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Elements of Information Theory
eBook 미리보기

책 정보

· 제목 : Elements of Information Theory (Hardcover, 2) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 일반
· ISBN : 9780471241959
· 쪽수 : 784쪽
· 출판일 : 2006-06-01

목차

Preface to the Second Edition.

Preface to the First Edition.

Acknowledgments for the Second Edition.

Acknowledgments for the First Edition.

1. Introduction and Preview.

1.1 Preview of the Book.

2. Entropy, Relative Entropy, and Mutual Information.

2.1 Entropy.

2.2 Joint Entropy and Conditional Entropy.

2.3 Relative Entropy and Mutual Information.

2.4 Relationship Between Entropy and Mutual Information.

2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information.

2.6 Jensen’s Inequality and Its Consequences.

2.7 Log Sum Inequality and Its Applications.

2.8 Data-Processing Inequality.

2.9 Sufficient Statistics.

2.10 Fano’s Inequality.

Summary.

Problems.

Historical Notes.

3. Asymptotic Equipartition Property.

3.1 Asymptotic Equipartition Property Theorem.

3.2 Consequences of the AEP: Data Compression.

3.3 High-Probability Sets and the Typical Set.

Summary.

Problems.

Historical Notes.

4. Entropy Rates of a Stochastic Process.

4.1 Markov Chains.

4.2 Entropy Rate.

4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph.

4.4 Second Law of Thermodynamics.

4.5 Functions of Markov Chains.

Summary.

Problems.

Historical Notes.

5. Data Compression.

5.1 Examples of Codes.

5.2 Kraft Inequality.

5.3 Optimal Codes.

5.4 Bounds on the Optimal Code Length.

5.5 Kraft Inequality for Uniquely Decodable Codes.

5.6 Huffman Codes.

5.7 Some Comments on Huffman Codes.

5.8 Optimality of Huffman Codes.

5.9 Shannon–Fano–Elias Coding.

5.10 Competitive Optimality of the Shannon Code.

5.11 Generation of Discrete Distributions from Fair Coins.

Summary.

Problems.

Historical Notes.

6. Gambling and Data Compression.

6.1 The Horse Race.

6.2 Gambling and Side Information.

6.3 Dependent Horse Races and Entropy Rate.

6.4 The Entropy of English.

6.5 Data Compression and Gambling.

6.6 Gambling Estimate of the Entropy of English.

Summary.

Problems.

Historical Notes.

7. Channel Capacity.

7.1 Examples of Channel Capacity.

7.2 Symmetric Channels.

7.3 Properties of Channel Capacity.

7.4 Preview of the Channel Coding Theorem.

7.5 Definitions.

7.6 Jointly Typical Sequences.

7.7 Channel Coding Theorem.

7.8 Zero-Error Codes.

7.9 Fano’s Inequality and the Converse to the Coding Theorem.

7.10 Equality in the Converse to the Channel Coding Theorem.

7.11 Hamming Codes.

7.12 Feedback Capacity.

7.13 Source–Channel Separation Theorem.

Summary.

Problems.

Historical Notes.

8. Differential Entropy.

8.1 Definitions.

8.2 AEP for Continuous Random Variables.

8.3 Relation of Differential Entropy to Discrete Entropy.

8.4 Joint and Conditional Differential Entropy.

8.5 Relative Entropy and Mutual Information.

8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information.

Summary.

Problems.

Historical Notes.

9. Gaussian Channel.

9.1 Gaussian Channel: Definitions.

9.2 Converse to the Coding Theorem for Gaussian Channels.

9.3 Bandlimited Channels.

9.4 Parallel Gaussian Channels.

9.5 Channels with Colored Gaussian Noise.

9.6 Gaussian Channels with Feedback.

Summary.

Problems.

Historical Notes.

10. Rate Distortion Theory.

10.1 Quantization.

10.2 Definitions.

10.3 Calculation of the Rate Distortion Function.

10.4 Converse to the Rate Distortion Theorem.

10.5 Achievability of the Rate Distortion Function.

10.6 Strongly Typical Sequences and Rate Distortion.

10.7 Characterization of the Rate Distortion Function.

10.8 Computation of Channel Capacity and the Rate Distortion Function.

Summary.

Problems.

Historical Notes.

11. Information Theory and Statistics.

11.1 Method of Types.

11.2 Law of Large Numbers.

11.3 Universal Source Coding.

11.4 Large Deviation Theory.

11.5 Examples of Sanov’s Theorem.

11.6 Conditional Limit Theorem.

11.7 Hypothesis Testing.

11.8 Chernoff–Stein Lemma.

11.9 Chernoff Information.

11.10 Fisher Information and the Cram´er–Rao Inequality.

Summary.

Problems.

Historical Notes.

12. Maximum Entropy.

12.1 Maximum Entropy Distributions.

12.2 Examples.

12.3 Anomalous Maximum Entropy Problem.

12.4 Spectrum Estimation.

12.5 Entropy Rates of a Gaussian Process.

12.6 Burg’s Maximum Entropy Theorem.

Summary.

Problems.

Historical Notes.

13. Universal Source Coding.

13.1 Universal Codes and Channel Capacity.

13.2 Universal Coding for Binary Sequences.

13.3 Arithmetic Coding.

13.4 Lempel–Ziv Coding.

13.5 Optimality of Lempel–Ziv Algorithms.

Compression.

Summary.

Problems.

Historical Notes.

14. Kolmogorov Complexity.

14.1 Models of Computation.

14.2 Kolmogorov Complexity: Definitions and Examples.

14.3 Kolmogorov Complexity and Entropy.

14.4 Kolmogorov Complexity of Integers.

14.5 Algorithmically Random and Incompressible Sequences.

14.6 Universal Probability.

14.7 Kolmogorov complexity.

14.9 Universal Gambling.

14.10 Occam’s Razor.

14.11 Kolmogorov Complexity and Universal Probability.

14.12 Kolmogorov Sufficient Statistic.

14.13 Minimum Description Length Principle.

Summary.

Problems.

Historical Notes.

15. Network Information Theory.

15.1 Gaussian Multiple-User Channels.

15.2 Jointly Typical Sequences.

15.3 Multiple-Access Channel.

15.4 Encoding of Correlated Sources.

15.5 Duality Between Slepian–Wolf Encoding and Multiple-Access Channels.

15.6 Broadcast Channel.

15.7 Relay Channel.

15.8 Source Coding with Side Information.

15.9 Rate Distortion with Side Information.

15.10 General Multiterminal Networks.

Summary.

Problems.

Historical Notes.

16. Information Theory and Portfolio Theory.

16.1 The Stock Market: Some Definitions.

16.2 Kuhn–Tucker Characterization of the Log-Optimal Portfolio.

16.3 Asymptotic Optimality of the Log-Optimal Portfolio.

16.4 Side Information and the Growth Rate.

16.5 Investment in Stationary Markets.

16.6 Competitive Optimality of the Log-Optimal Portfolio.

16.7 Universal Portfolios.

16.8 Shannon–McMillan–Breiman Theorem (General AEP).

Summary.

Problems.

Historical Notes.

17. Inequalities in Information Theory.

17.1 Basic Inequalities of Information Theory.

17.2 Differential Entropy.

17.3 Bounds on Entropy and Relative Entropy.

17.4 Inequalities for Types.

17.5 Combinatorial Bounds on Entropy.

17.6 Entropy Rates of Subsets.

17.7 Entropy and Fisher Information.

17.8 Entropy Power Inequality and Brunn–Minkowski Inequality.

17.9 Inequalities for Determinants.

17.10 Inequalities for Ratios of Determinants.

Summary.

Problems.

Historical Notes.

Bibliography.

List of Symbols.

Index.

저자소개

T. M. Cover (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책