책 이미지
책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 논리
· ISBN : 9780521593441
· 쪽수 : 328쪽
· 출판일 : 1999-11-11
목차
Part I. Introduction to Set Theory: 1. Notation, conventions; 2. Definition of equivalence. The concept of cardinality. The axiom of choice; 3. Countable cardinal, continuum cardinal; 4. Comparison of cardinals; 5. Operations with sets and cardinals; 6. Examples; 7. Ordered sets. Order types. Ordinals; 8. Properties of well-ordered sets. Good sets. The ordinal operation; 9. Transfinite induction and recursion; 10. Definition of the cardinality operation. Properties of cardinalities. The confinality operation; 11. Properties of the power operation; Appendix. An axiomatic development of set theory; Part II. Topics in Combinatorial Set Theory: 12. Stationary sets; 13. Delta-systems; 14. Ramsey's theorem and its generalizations. Partition calculus; 15. Inaccessible cardinals. Mahlo cardinals; 16. Measurable cardinals; 17. Real-valued measurable cardinals, saturated ideas; 18. Weakly compact and Ramsey cardinals; 19. Set mappings; 20. The square-bracket symbol. Strengthenings of the Ramsey counterexamples; 21. Properties of the power operation; 22. Powers of singular cardinals. Shelah's theorem.














