logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Quasiconformal Mappings and Sobolev Spaces

Quasiconformal Mappings and Sobolev Spaces (Hardcover, 1990)

Yu. G. Reshetnyak, V. M. Gol Dshtein (지은이)
Kluwer Academic Pub
106,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
87,720원 -18% 0원
4,390원
83,330원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Quasiconformal Mappings and Sobolev Spaces
eBook 미리보기

책 정보

· 제목 : Quasiconformal Mappings and Sobolev Spaces (Hardcover, 1990) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 미적분학
· ISBN : 9780792305439
· 쪽수 : 372쪽
· 출판일 : 1990-02-28

목차

1. Preliminary Information about Integration Theory.- 1. Notation and Terminology.- 1.1. Sets in Rn.- 1.2. Classes of Functions in Rn.- 2. Some Auxiliary Information about Sets and Functions in Rn.- 2.1. Averaging of Functions.- 2.2. The Whitney Partition Theorem.- 2.3. Partition of Unitiy.- 3. General Information about Measures and Integrals.- 3.1. Notion of a Measure.- 3.2. Decompositions in the Sense of Hahn and Jordan.- 3.3. The Radon-Nikodym Theorem and the Lebesgue Decomposition of Measure.- 4. Differentiation Theorems for Measures in Rn.- 4.1. Definitions.- 4.2. The Vitali Covering Lemma.- 4.3. The Lp-Continuity Theorem for Functions of the Class Lp,loc.- 4.4. The Differentiability Theorem for the Measure in Rn.- 5. Generalized Functions.- 5.1. Definition and Examples of Generalized Functions.- 5.2. Operations with Generalized Functions.- 5.3. Support of a Generalized Function. The Order of Singularity of a Generalized Function.- 5.4. The Generalized Function as a Derivative of the Usual Function. Averaging Operation.- 2. Functions with Generalized Derivatives.- 1. Sobolev-Type Integral Representations.- 1.1. Preliminary Remarks.- 1.2. Integral Representations in a Curvilinear Cone.- 1.3. Domains of the Class J.- 1.4. Integral Representations of Smooth Functions in Domains of the Class J.- 2. Other Integral Representations.- 2.1. Sobolev-Type Integral Representations for Simple Domains.- 2.2. Differential Operators with the Complete Integrability Condition.- 2.3. Integral Representations of a Function in Terms of a System of Differential Operators with the Complete Integrability Condition.- 2.4. Integral Representations for the Deformation Tensor and for the Tensor of Conformal Deformation.- 3. Estimates for Potential-Type Integrals.- 3.1. Preliminary Information.- 3.2. Lemma on the Compactness of Integral Operators.- 3.3. Basic Inequalities.- 4. Classes of Functions with Generalized Derivatives.- 4.1. Definition and the Simplest Properties.- 4.2. Integral Representations for Elements of the Space W?1,locl.- 4.3. The Imbedding Theorem.- 4.4. Corollaries of Theorem 4.2. Normalization of the Spaces Wpl(U).- 4.5. Approximation of Functions from Wpl by Smooth Functions.- 4.6. Change of Variables for Functions with Generalized Derivatives.- 4.7. Compactness of the Imbedding Operators.- 4.8. Estimates with a Small Coefficient for the Norm in Lpl.- 4.9. Functions of One Variable.- 4.10. Differential Description of Convex Functions.- 4.11. Functions Satisfying the Lipschitz Condition.- 5. Theorem on the Differentiability Almost Everywhere.- 5.1. Definitions.- 5.2. Auxiliary Propositions.- 5.3 The Main Result.- 5.4. Corollaries of the General Theorem on the Differentiability Almost Everywhere.- 5.5. The Behaviour of Functions of the Class Wpl on Almost All Planes of Smaller Dimensionality.- 5.6. The ACL-Classes.- 3. Nonlinear Capacity.- 1. Capacity Induced by a Linear Positive Operator.- 1.1. Definition and the Simplest Properties.- 1.2. Capacity as the Outer Measure.- 1.3. Sets of Zero Capacity.- 1.4. Extension of the Set of Admissible Functions.- 1.5. Extremal Function for Capacity.- 1.6. Comparison of Various Capacities.- 2. The Classes W(T, p, V).- 2.1. Definition of Classes.- 2.2. Theorems of Egorov and Luzin for Capacity.- 2.3. Dual (T, p)-Capacity, p 1. Definition and Basic Properties.- 2.4. Calculation of Dual (T, p)-Capacity.- 3. Sets Measurable with Respect to Capacity.- 3.1. Definition and the Simplest Properties of Generalized Capacity.- 3.2. (T, p)-Capacity as Generalized Capacity.- 4. Variational Capacity.- 4.1. Definition of Variational Capacity.- 4.2. Comparison of Variational Capacity and (T, p)-Capacity.- 4.3. Sets of Zero Variational Capacity.- 4.4. Examples of Variational Capacity.- 4.5. Refined Functions.- 4.6. Theorems of Imbedding into the Space of Continuous Functions.- 5. Capacity in Sobolev Spaces.- 5.1. Three Types of Capacity.- 5.2. Extremal Functions for Capacity.- 5.3. Capacity and th

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책