logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] RF and Microwave Engineering

[eBook Code] RF and Microwave Engineering (eBook Code, 1st)

(Fundamentals of Wireless Communications)

Frank Gustrau (지은이)
  |  
Wiley
2012-06-21
  |  
125,790원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 100,630원 -20% 0원 0원 100,630원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] RF and Microwave Engineering

책 정보

· 제목 : [eBook Code] RF and Microwave Engineering (eBook Code, 1st) (Fundamentals of Wireless Communications)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 마이크로파
· ISBN : 9781118349588
· 쪽수 : 360쪽

목차

Preface

List of Abbreviations

List of Symbols

1 Introduction

1.1 Radiofrequency and Microwave Applications

1.2 Frequency Bands

1.3 Physical Phenomena in the High Frequency Domain

1.3.1 Electrically Short Transmission Line

1.3.2 Transmission Line with Length Greater than One-Tenth of Wavelength

1.3.3 Radiation and Antennas

1.4 Outline of the Following Chapters

References

Further Reading

2 Electromagnetic Fields and Waves

2.1 Electric and Magnetic Fields

2.1.1 Electrostatic Fields

2.1.2 Steady Electric Current and Magnetic Fields

2.1.3 Differential Vector Operations

2.2 Maxwell’s Equations

2.2.1 Differential Form in the Time Domain

2.2.2 Differential Form for Harmonic Time Dependence

2.2.3 Integral Form

2.2.4 Constitutive Relations and Material Properties

2.2.5 Interface Conditions

2.3 Classification of Electromagnetic Problems

2.3.1 Static Fields

2.3.2 Quasi-static Fields

2.3.3 Coupled Electromagnetic Fields

2.4 Skin Effect

2.5 Electromagnetic Waves

2.5.1 Wave Equation and Plane Waves

2.5.2 Polarization of Waves

2.5.3 Reflection and Refraction

2.5.4 Spherical Waves

2.6 Summary

2.7 Problems

References

Further Reading

3 Transmission Line Theory and Transient Signals on Lines

3.1 Transmission Line Theory

3.1.1 Equivalent Circuit of a Line Segment

3.1.2 Telegrapher’s Equation

3.1.3 Voltage and Current Waves on Transmission Lines

3.1.4 Load-Terminated Transmission Line

3.1.5 Input Impedance

3.1.6 Loss-less Transmission Lines

3.1.7 Low Loss Transmission Lines

3.1.8 Transmission Line with Different Terminations

3.1.9 Impedance Transformation with Loss-less Lines

3.1.10 Reflection Coefficient

3.1.11 Smith Chart

3.2 Transient Signals on Transmission Lines

3.2.1 Step Function

3.2.2 Rectangular Function

3.3 Eye Diagram

3.4 Summary

3.5 Problems

References

Further Reading

4 Transmission Lines and Waveguides

4.1 Overview

4.2 Coaxial Line

4.2.1 Specific Inductance and Characteristic Impedance

4.2.2 Attenuation of Low Loss Transmission Lines

4.2.3 Technical Frequency Range

4.2.4 Areas of Application

4.3 Microstrip Line

4.3.1 Characteristic Impedance and Effective Permittivity

4.3.2 Dispersion and Technical Frequency Range

4.3.3 Areas of Application

4.4 Stripline

4.4.1 Characteristic Impedance

4.4.2 Technical Frequency Range

4.5 Coplanar Line

4.5.1 Characteristic Impedance and Effective Permittivity

4.5.2 Coplanar Waveguide over Ground

4.5.3 Coplanar Waveguides and Air Bridges

4.5.4 Technical Frequency Range

4.5.5 Areas of Application

4.6 Rectangular Waveguide

4.6.1 Electromagnetic Waves between Electric Side Walls

4.6.2 Dominant Mode (TE10)

4.6.3 Higher Order Modes

4.6.4 Areas of Application

4.6.5 Excitation of Waveguide Modes

4.6.6 Cavity Resonators

4.7 Circular Waveguide

4.8 Two-Wire Line

4.8.1 Characteristic Impedance

4.8.2 Areas of Application

4.9 Three-Conductor Transmission Line

4.9.1 Even and Odd Modes

4.9.2 Characteristic Impedances and Propagation Constants

4.9.3 Line Termination for Even and Odd Modes

4.10 Problems

References

5 Scattering Parameters

5.1 Multi-Port Network Representations

5.2 Normalized Power Waves

5.3 Scattering Parameters and Power

5.4 S-Parameter Representation of Network Properties

5.4.1 Matching

5.4.2 Complex Conjugate Matching

5.4.3 Reciprocity

5.4.4 Symmetry

5.4.5 Passive and Loss-less Circuits

5.4.6 Unilateral Circuits

5.4.7 Specific Characteristic of Three-Port Networks

5.5 Calculation of S-Parameters

5.5.1 Reflection Coefficients

5.5.2 Transmission Coefficients

5.5.3 Renormalization

5.6 Signal Flow Method

5.7 S-Parameter Measurement

5.8 Problems

References

Further Reading

6 RF Components and Circuits

6.1 Equivalent Circuits of Concentrated Passive Components

6.1.1 Resistor

6.1.2 Capacitor

6.1.3 Inductor

6.2 Transmission Line Resonator

6.2.1 Half-Wave Resonator

6.2.2 Quarter-Wave Resonator

6.3 Impedance Matching

6.3.1 LC-Networks

6.3.2 Matching Using Distributed Elements

6.4 Filter

6.4.1 Classical LC-Filter Design

6.4.2 Butterworth Filter

6.5 Transmission Line Filter

6.5.1 Edge-Coupled Line Filters

6.5.2 Hairpin Filter

6.5.3 Stepped Impedance Filter

6.5.4 Parasitic Box Resonance

6.5.5 Waveguide Filter

6.6 Circulator

6.7 Power Divider

6.7.1 Wilkinson Power Divider

6.7.2 Unequal Split Power Divider

6.8 Branchline Coupler

6.8.1 Conventional 3 dB Coupler

6.8.2 Unequal Split Branchline Coupler

6.9 Rat Race Coupler

6.10 Directional Coupler

6.11 Balanced to Unbalanced Circuits

6.12 Electronic Circuits

6.12.1 Mixers 238

6.12.2 Amplifiers and Oscillators

6.13 RF Design Software

6.13.1 RF Circuit Simulators

6.13.2 Three-Dimensional Electromagnetic Simulators

6.14 Problems

References

Further Reading

7 Antennas

7.1 Fundamental Parameters

7.1.1 Nearfield and Farfield

7.1.2 Isotropic Radiator

7.1.3 Radiation Pattern and Related Parameters

7.1.4 Impedance Matching and Bandwidth

7.2 Standard Types of Antennas

7.3 Mathematical Treatment of the Hertzian Dipole

7.4 Wire Antennas

7.4.1 Half-Wave Dipole

7.4.2 Monopole

7.4.3 Concepts for Reducing Antenna Height

7.5 Planar Antennas

7.5.1 Rectangular Patch Antenna

7.5.2 Circularly Polarizing Patch Antennas

7.5.3 Planar Dipole and Inverted-F Antenna

7.6 Antenna Arrays

7.6.1 Single Element Radiation Pattern and Array Factor

7.6.2 Phased Array Antennas

7.6.3 Beam Forming

7.7 Modern Antenna Concepts

7.8 Problems

References

Further Reading

8 Radio Wave Propagation

8.1 Propagation Mechanisms

8.2 Basic Propagation Models

8.2.1 Free Space Loss

8.2.2 Attenuation of Air

8.2.3 Plane Earth Loss

8.2.4 Point-to-Point Radio Links

8.2.5 Layered Media

8.3 Path Loss Models

8.3.1 Multipath Environment

8.3.2 Clutter Factor Model

8.3.3 Okumura–Hata Model

8.3.4 Physical Models and Numerical Methods

8.4 Problems

References

Further Reading

Appendix A

A.1 Coordinate Systems

A.1.1 Cartesian Coordinate System

A.1.2 Cylindrical Coordinate System

A.1.3 Spherical Coordinate System

A.2 Logarithmic Representation

A.2.1 Dimensionless Quantities

A.2.2 Relative and Absolute Ratios

A.2.3 Link Budget

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책