책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전기공학
· ISBN : 9781119355779
· 쪽수 : 376쪽
· 출판일 : 2017-09-25
목차
Table of Contents
Preface xi
1 INTRODUCTION 1
1.1 Background 1
1.2 Physical Structures 2
1.3 Time-Scale Structures 3
1.4 Political Structures 4
1.5 The Phenomena of Interest 6
2 ELECTROMAGNETIC TRANSIENTS 9
2.1 The Fastest Transients 9
2.2 Transmission LineModels 10
2.3 SolutionMethods 15
2.4 Problems 22
3 SYNCHRONOUS MACHINE MODELING 25
3.1 Conventions and Notation 25
3.2 Three-Damper-WindingModel 26
3.3 Transformations and Scaling 28
3.4 The LinearMagnetic Circuit 38
3.5 The NonlinearMagnetic Circuit 45
3.6 Single-Machine Steady State 51
3.7 Operational Impedances and Test Data 56
3.8 Problems 63
4 SYNCHRONOUS MACHINE CONTROL MODELS 67
4.1 Voltage and Speed Control Overview 67
4.2 Exciter Models 68
4.3 Voltage RegulatorModels 73
4.4 TurbineModels 79
4.5 Speed GovernorModels 85
4.6 Problems 88
5 SINGLE-MACHINE DYNAMIC MODELS 91
5.1 Terminal Constraints 1
5.2 TheMulti-Time-Scale Model 95
5.3 Elimination of Stator/Network Transients 97
5.4 The Two-AxisModel 103
5.5 The One-Axis (Flux-Decay) Model 105
5.6 The ClassicalModel 107
5.7 Damping Torques 109
5.8 Single-Machine Infinite-Bus System 114
5.9 SynchronousMachine Saturation 120
5.10 Problems 127
6 MULTIMACHINE DYNAMIC MODELS 129
6.1 The Synchronously Rotating Reference Frame 129
6.2 Network and R-L Load Constraints 132
6.3 Elimination of Stator/Network Transients 134
6.4 Multimachine Two-AxisModel 144
6.5 Multimachine Flux–Decay Model 148
6.6 Multimachine ClassicalModel 151
6.7 Multimachine Damping Torques 154
6.8 MultimachineModels with Saturation 155
6.9 Frequency During Transients 161
6.10 Angle References and an Infinite Bus 162
6.11 Automatic Generation Control (AGC) 164
7 MULTIMACHINE SIMULATION 173
7.1 Differential-Algebraic Model 173
7.2 Stator Algebraic Equations 177
7.3 Network Equations 179
7.4 Industry Model 190
7.5 Simplification of the Two-AxisModel 194
7.6 Initial Conditions (FullModel) 200
7.7 Numerical Solution: Power-Balance Form 209
7.8 Numerical Solution: Current-Balance Form 214
7.9 Reduced-OrderMultimachineModels 217
7.10 Initial Conditions 227
7.11 Conclusion 229
7.12 Problems 229
8 SMALL-SIGNAL STABILITY 233
8.1 Background 233
8.2 Basic Linearization Technique 234
8.3 Participation Factors 247
8.4 Studies on Parametric Effects 253
8.5 Electromechanical Oscillatory Modes 260
8.6 Power SystemStabilizers 265
8.7 Conclusion 288
8.8 Problems 288
9 ENERGY FUNCTION METHODS 295
9.1 Background 295
9.2 Physical andMathematical Aspects 295
9.3 Lyapunov’s Method 299
9.4 Modeling Issues 300
9.5 Energy Function Formulation 302
9.6 Potential Energy Boundary Surface (PEBS) 305
9.7 The Boundary Controlling u.e.p (BCU) Method 322
9.8 Structure-Preserving Energy Functions 328
9.9 Conclusion 329
9.10 Problems 330
10 SYNCHRONIZED PHASOR MEASUREMENT 333
10.1 Background 333
10.2 Phasor Computation 335
10.3 Phasor Data Communication 349
10.4 Power SystemFrequency Response 350
10.5 Power System Disturbance Propagation 354
10.6 Power SystemDisturbance Signatures 361
10.7 Phasor State Estimation 365
10.8 Modal Analyses of Oscillations 371
10.9 Energy Function Analysis 374
10.10Control Design using PMU Data 377
10.11Conclusions and Remarks 381
10.12Problems 382
11 Power System Toolbox 387
11.1 Background 387
11.2 Power Flow Computation 388
11.3 Dynamic Simulation 395
11.4 Linear Analysis . . 408
11.5 Conclusions and Remarks 412
11.6 Problems 413
A Integral Manifolds for Model 415
A.1 Manifolds and IntegralManifolds 415
A.2 IntegralManifolds for Linear Systems 416
A.3 IntegralManifolds for Nonlinear Systems 427
Bibliography 433














