logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

[eBook Code] Power System Dynamics and Stability

[eBook Code] Power System Dynamics and Stability (eBook Code, 2nd)

(With Synchrophasor Measurement and Power System Toolbox)

Joe H. Chow, Peter W. Sauer, A, M. (지은이)
  |  
Wiley-IEEE Press
2017-07-05
  |  
205,650원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 164,520원 -20% 0원 0원 164,520원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

[eBook Code] Power System Dynamics and Stability

책 정보

· 제목 : [eBook Code] Power System Dynamics and Stability (eBook Code, 2nd) (With Synchrophasor Measurement and Power System Toolbox)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전력자원 > 일반
· ISBN : 9781119355793
· 쪽수 : 376쪽

목차

Preface xiii

About the Companion Website xv

1 Introduction 1

1.1 Background 1

1.2 Physical Structures 2

1.3 Time-Scale Structures 3

1.4 Political Structures 4

1.5 The Phenomena of Interest 5

1.6 New Chapters Added to this Edition 5

2 Electromagnetic Transients 7

2.1 The Fastest Transients 7

2.2 Transmission Line Models 7

2.3 Solution Methods 12

2.4 Problems 17

3 Synchronous Machine Modeling 19

3.1 Conventions and Notation 19

3.2 Three-Damper-Winding Model 20

3.3 Transformations and Scaling 21

3.4 The Linear Magnetic Circuit 29

3.5 The Nonlinear Magnetic Circuit 35

3.6 Single-Machine Steady State 40

3.7 Operational Impedances and Test Data 44

3.8 Problems 49

4 Synchronous Machine Control Models 53

4.1 Voltage and Speed Control Overview 53

4.2 Exciter Models 53

4.3 Voltage Regulator Models 58

4.4 Turbine Models 62

4.4.1 Hydroturbines 62

4.4.2 Steam Turbines 64

4.5 Speed Governor Models 67

4.6 Problems 70

5 Single-Machine Dynamic Models 71

5.1 Terminal Constraints 71

5.2 The Multi-Time-Scale Model 74

5.3 Elimination of Stator/Network Transients 76

5.4 The Two-Axis Model 81

5.5 The One-Axis (Flux-Decay) Model 83

5.6 The Classical Model 84

5.7 Damping Torques 86

5.8 Single-Machine Infinite-Bus System 90

5.9 Synchronous Machine Saturation 94

5.10 Problems 100

6 Multimachine Dynamic Models 101

6.1 The Synchronously Rotating Reference Frame 101

6.2 Network and R-L Load Constraints 103

6.3 Elimination of Stator/Network Transients 105

6.3.1 Generalization of Network and Load Dynamic Models 110

6.3.2 The Special Case of “Impedance Loads” 112

6.4 Multimachine Two-Axis Model 113

6.4.1 The Special Case of “Impedance Loads” 115

6.5 Multimachine Flux–Decay Model 116

6.5.1 The Special Case of “Impedance Loads” 117

6.6 Multimachine Classical Model 118

6.6.1 The Special Case of “Impedance Loads” 119

6.7 Multimachine Damping Torques 120

6.8 Multimachine Models with Saturation 121

6.8.1 The Multimachine Two-Axis Model with Synchronous Machine Saturation 123

6.8.2 The Multimachine Flux-Decay Model with Synchronous Machine Saturation 124

6.9 Frequency During Transients 126

6.10 Angle References and an Infinite Bus 127

6.11 Automatic Generation Control (AGC) 129

7 Multimachine Simulation 135

7.1 Differential-Algebraic Model 135

7.1.1 Generator Buses 136

7.1.2 Load Buses 137

7.2 Stator Algebraic Equations 138

7.2.1 Polar Form 138

7.2.2 Rectangular Form 138

7.2.3 Alternate Form of Stator Algebraic Equations 139

7.3 Network Equations 140

7.3.1 Power-Balance Form 140

7.3.2 Real Power Equations 141

7.3.3 Reactive Power Equations 141

7.3.4 Current-Balance Form 142

7.4 Industry Model 149

7.5 Simplification of the Two-Axis Model 153

7.5.1 Simplification #1 (Neglecting Transient Saliency in the Synchronous Machine) 153

7.5.2 Simplification #2 (Constant Impedance Load in the Transmission System) 154

7.6 Initial Conditions (Full Model) 158

7.6.1 Load-Flow Formulation 158

7.6.2 Standard Load Flow 159

7.6.3 Initial Conditions for Dynamic Analysis 160

7.6.4 Angle Reference, Infinite Bus, and COI Reference 165

7.7 Numerical Solution: Power-Balance Form 165

7.7.1 SI Method 165

7.7.2 Review of Newton’s Method 165

7.7.3 Numerical Solution Using SI Method 166

7.7.4 Disturbance Simulation 167

7.7.5 PE Method 168

7.8 Numerical Solution: Current-Balance Form 168

7.8.1 Some Practical Details 170

7.8.2 Prediction 171

7.9 Reduced-Order Multimachine Models 171

7.9.1 Flux-Decay Model 171

7.9.2 Generator Equations 172

7.9.3 Stator Equations 172

7.9.4 Network Equations 172

7.9.5 Initial Conditions 172

7.9.6 Structure-Preserving Classical Model 173

7.9.7 Internal-Node Model 177

7.10 Initial Conditions 179

7.11 Conclusion 180

7.12 Problems 180

8 Small-Signal Stability 183

8.1 Background 183

8.2 Basic Linearization Technique 184

8.2.1 Linearization of Model A 185

8.2.2 Differential Equations 185

8.2.3 Stator Algebraic Equations 186

8.2.4 Network Equations 186

8.2.5 Linearization of Model B 193

8.2.6 Differential Equations 194

8.2.7 Stator Algebraic Equations 194

8.2.8 Network Equations 194

8.3 Participation Factors 194

8.4 Studies on Parametric Effects 198

8.4.1 Effect of Loading 198

8.4.2 Effect of KA 200

8.4.3 Effect of Type of Load 201

8.4.4 Hopf Bifurcation 203

8.5 Electromechanical Oscillatory Modes 205

8.5.1 Eigenvalues of A and A𝜔 207

8.6 Power System Stabilizers 209

8.6.1 Basic Approach 209

8.6.2 Derivation of K1K6 Constants 209

8.6.3 Linearization 211

8.6.4 Synchronizing and Damping Torques 215

8.6.5 Damping of Electromechanical Modes 215

8.6.6 Torque-Angle Loop 219

8.6.7 Synchronizing Torque 221

8.6.8 Damping Torque 221

8.6.9 Power System Stabilizer Design 221

8.6.10 Frequency-Domain Approach 222

8.6.11 Design Procedure Using the Frequency-Domain Method 223

8.7 Conclusion 227

8.8 Problems 227

9 Energy Function Methods 233

9.1 Background 233

9.2 Physical and Mathematical Aspects of the Problem 233

9.3 Lyapunov’s Method 236

9.4 Modeling Issues 237

9.5 Energy Function Formulation 238

9.6 Potential Energy Boundary Surface (PEBS) 241

9.6.1 Single-Machine Infinite-Bus System 241

9.6.2 Energy Function for a Single-Machine Infinite-Bus System 244

9.6.3 Equal-Area Criterion and the Energy Function 247

9.6.4 Multimachine PEBS 249

9.6.5 Initialization of VPE(𝜃) and its Use in PEBS Method 252

9.7 The Boundary Controlling u.e.p (BCU) Method 254

9.7.1 Algorithm 256

9.8 Structure-Preserving Energy Functions 259

9.9 Conclusion 260

9.10 Problems 260

10 Synchronized PhasorMeasurement 263

10.1 Background 263

10.2 Phasor Computation 264

10.2.1 Nominal Frequency Phasors 264

10.2.2 Off-Nominal Frequency Phasors 265

10.2.3 Post Processing 269

10.2.4 Positive-Sequence Signals 271

10.2.5 Frequency Estimation 272

10.2.6 Phasor Data Accuracy 274

10.2.7 PMU Simulator 275

10.3 Phasor Data Communication 276

10.4 Power System Frequency Response 277

10.5 Power System Disturbance Propagation 280

10.5.1 Disturbance Triggering 285

10.6 Power System Disturbance Signatures 285

10.6.1 Generator or Load Trip 286

10.6.2 Oscillations 287

10.6.3 Fault and Line Switching 288

10.6.4 Shunt Capacitor or Reactor Switching 289

10.6.5 Voltage Collapse 289

10.7 Phasor State Estimation 289

10.8 Modal Analyses of Oscillations 293

10.9 Energy Function Analysis 296

10.10 Control Design Using PMU Data 299

10.11 Conclusions and Remarks 301

10.12 Problems 302

11 Power SystemToolbox 305

11.1 Background 305

11.2 Power Flow Computation 306

11.2.1 Data Requirement 306

11.2.2 Power Flow Formulation and Solution 308

11.2.3 Nonconvergent Power Flow 311

11.3 Dynamic Simulation 311

11.3.1 Dynamic Models and Per-Unit Parameter Values 312

11.3.2 Initialization 313

11.3.3 Network Solution 314

11.3.4 Integration Methods 316

11.3.5 Disturbance Specifications 317

11.4 Linear Analysis 321

11.5 Conclusions and Remarks 324

11.6 Problems 324

A IntegralManifolds for Model Reduction 327

A.1 Manifolds and Integral Manifolds 327

A.2 Integral Manifolds for Linear Systems 328

A.3 Integral Manifolds for Nonlinear Systems 336

Bibliography 341

Index 353

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책