책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전력자원 > 전기 에너지
· ISBN : 9781119546870
· 쪽수 : 608쪽
· 출판일 : 2020-01-21
목차
Preface xvii
1 Introduction 1
1.1 Electrification 1
1.2 Generation, Transmission and Distribution Systems 2
1.2.1 Central Generating Station Model 2
1.2.2 Renewable Generation 4
1.2.3 Smart Grid 5
1.3 Time Scales 5
1.3.1 Dynamic Phenomena 6
1.3.2 Measurements and Data 7
1.3.3 Control Functions and System Operation 7
1.4 Organization of the Book 8
Part I System Concepts
2 Steady-State Power Flow 13
2.1 Introduction 13
2.2 Power Network Elements and Admittance Matrix 14
2.2.1 Transmission Lines 14
2.2.2 Transformers 15
2.2.3 Per Unit Representation 16
2.2.4 Building the Network Admittance Matrix 17
2.3 Active and Reactive Power Flow Calculations 19
2.4 Power Flow Formulation 23
2.5 Newton-Raphson Method 24
2.5.1 General Procedure 25
2.5.2 NR Solution of Power Flow Equation 26
2.6 Advanced Power Flow Features 32
2.6.1 Load Bus Voltage Regulation 32
2.6.2 Multi-Area Power Flow 33
2.6.3 Active Line Power Flow Regulation 34
2.6.4 Dishonest Newton-Raphson Method 35
2.6.5 Fast Decoupled Loadflow 35
2.6.6 DC Power Flow 36
2.7 Summary and Notes 37
2.8 Appendix 2.A: Two-Winding Transformer Model 37
2.9 Appendix 2.B: LU Decomposition and Sparsity Methods 42
2.10 Appendix 2.C: Power Flow and Dynamic Data for the 2-Area, 4-Machine System 45
2.11 Problems 46
3 Steady-State Voltage Stability Analysis 53
3.1 Introduction 53
3.2 Voltage Collapse Incidents 54
3.2.1 Tokyo, Japan: July 23, 1987 55
3.2.2 US Western Power System: July 2, 1996 55
3.3 Reactive Power Consumption on Transmission Lines 56
3.4 Voltage Stability Analysis of a Radial Load System 61
3.4.1 Maximum Power Transfer 66
3.5 Voltage Stability Analysis of Large Power Systems 68
3.6 Continuation Power Flow Method 72
3.6.1 Continuation Power Flow Algorithm 74
3.7 An AQ-Bus Method for Solving Power Flow 76
3.7.1 Analytical Framework for AQ-Bus Method 77
3.7.2 AQ-Bus Formulation for Constant-Power-Factor Loads 78
3.7.3 AQ-Bus Algorithm for computing voltage stability margins 79
3.8 Power System Components Affecting Voltage Stability 84
3.8.1 Shunt Reactive Power Supply 84
3.8.2 Under-Load Tap Changer (ULTC) 86
3.9 Hierarchical Voltage Control 88
3.10 Voltage Stability Margins and Indices 89
3.10.1 Voltage Stability Margins 89
3.10.2 Voltage Sensitivities 90
3.10.3 Singular Values and Eigenvalues of the Power Flow Jacobian Matrix 91
3.11 Summary and Notes 92
3.12 Problems 92
4 Power System Dynamics and Simulation 97
4.1 Introduction 97
4.2 Electromechanical Model of Synchronous Machines 98
4.3 Single-Machine Infinite-Bus (SMIB) System 101
4.4 Power System Disturbances 105
4.4.1 Fault-On Analysis 105
4.4.2 Post-Fault Analysis 108
4.4.3 Other Types of Faults 110
4.5 Simulation Methods 110
4.5.1 Modified Euler Methods 111
4.5.2 Adams-Bashforth Second-Order Method 114
4.5.3 Selecting Integration Stepsize 115
4.5.4 Implicit Integration Methods 117
4.6 Dynamic Models of Multi-Machine Power Systems 119
4.6.1 Constant-Impedance Loads 120
4.6.2 Generator Current Injections 121
4.6.3 Network Equation Extended to the Machine Internal Node 122
4.6.4 Reduced Admittance Matrix Approach 123
4.6.5 Method for Dynamic Simulation 123
4.7 Multi-Machine Power System Stability 128
4.7.1 Reference Frames for Machine Angles 129
4.8 Power System Toolbox 130
4.9 Summary and Notes 133
4.10 Problems 134
5 Direct Transient Stability Analysis 137
5.1 Introduction 137
5.2 Equal-Area Analysis of a SMIB System 138
5.2.1 Power-Angle Curve 138
5.2.2 Fault-On and Post-Fault Analysis 140
5.3 Transient Energy Functions 142
5.3.1 Lyapunov Functions 143
5.3.2 Energy Function for SMIB Electromechanical Model 143
5.4 Energy Function Analysis of a Disturbance Event 146
5.5 SMIB Model Phase Portrait and Region of Stability 151
5.6 Direct Stability Analysis using Energy Functions 153
5.7 Energy Functions for Multi-Machine Power Systems 155
5.7.1 Direct Stability Analysis for Multi-machine Systems 158
5.7.2 Computation of Critical Energy 159
5.8 Dynamic Security Assessment 162
5.9 Summary and Notes 163
5.10 Problems 163
6 Linear Analysis and Small-Signal Stability 165
6.1 Introduction 165
6.2 Electromechanical Modes 166
6.3 Linearization 167
6.3.1 State-Space Models 167
6.3.2 Input-Output Models 169
6.3.3 Modal Analysis and Time-Domain Solutions 169
6.3.4 Time Response of Linear Systems 171
6.3.5 Participation Factors 174
6.4 Linearized Models of Single-machine Infinite-Bus Systems 175
6.5 Linearized Models of Multi-Machine Systems 178
6.5.1 Synchronizing Torque Matrix and Eigenvalue Properties 180
6.5.2 Modeshapes and Participation Factors 181
6.6 Developing Linearized Models of Large Power Systems 184
6.6.1 Analytical Partial Derivatives 184
6.6.2 Numerical Linearization 188
6.7 Summary and Notes 190
6.8 Problems 191
Part II Synchronous Machine Models and their Control Systems
7 Steady-State Models and Operation of Synchronous Machines 197
Joe H Chow
7.1 Introduction 197
7.2 Physical Description 198
7.2.1 Amortisseur Bars 200
7.3 Synchronous Machine Model 200
7.3.1 Flux Linkage and Voltage Equations 201
7.3.2 Stator (Armature) Self and Mutual Inductances 203
7.3.3 Mutual Inductances between Stator and Rotor 204
7.3.4 Rotor Self and Mutual Inductances 205
7.4 Park Transformation 206
7.4.1 Electrical Power in dq0 Variables 209
7.5 Reciprocal, Equal Lad Per-Unit System 210
7.5.1 Stator Base Values 211
7.5.2 Stator Voltage Equations 212
7.5.3 Rotor Base Values 212
7.5.4 Rotor Voltage Equations 213
7.5.5 Stator Flux-Linkage Equations 214
7.5.6 Rotor Flux-Linkage Equations 214
7.5.7 Equal Mutual Inductance 214
7.6 Equivalent Circuits 219
7.6.1 Flux-Linkage Circuits 219
7.6.2 Voltage Equivalent Circuits 220
7.7 Steady-State Analysis 222
7.7.1 Open-Circuit Condition 222
7.7.2 Under-Load Condition 224
7.7.3 Drawing Voltage-Current Vector Diagrams 226
7.8 Saturation Effects 228
7.8.1 Representations of Magnetic Saturation 230
7.9 Generator Capability Curves 232
7.10 Summary and Notes 233
7.11 Problems 234
8 Dynamic Models of Synchronous Machines 237
Joe H Chow
8.1 Introduction 237
8.2 Machine Dynamic Response During Fault 238
8.2.1 DC Offset and Stator Transients 239
8.3 Transient and Subtransient Reactances and Time Constants 241
8.4 Subtransient Synchronous Machine Model 246
8.5 Other Synchronous Machine Models 253
8.5.1 Flux-Decay Model 253
8.5.2 Classical Model 255
8.6 dq-axes rotation between a generator and the system 255
8.7 Power System Simulation using Detailed Machine Models 257
8.7.1 Power System Simulation Algorithm 257
8.8 Linearized Models 259
8.9 Summary and Notes 261
8.10 Problems 262
9 Excitation Systems 265
9.1 Introduction 265
9.2 Excitation System Models 266
9.3 Type DC Exciters 267
9.3.1 Separately Excited DC exciter 268
9.3.2 Self-Excited DC Exciter 272
9.3.3 Voltage Regulator 273
9.3.4 Initialization of DC Type Exciters 274
9.3.5 Transfer Function Analysis 275
9.3.6 Generator and Exciter Closed-Loop System 278
9.3.7 Excitation System Response Ratios 280
9.4 Type AC Exciters 283
9.5 Type ST Excitation Systems 285
9.6 Load Compensation Control 288
9.7 Protective Functions 289
9.8 Summary and Notes 291
9.9 Appendix 9.A Anti-Windup Limits 291
9.10 Problems 292
10 Power System Stabilizers 295
10.1 Introduction 295
10.2 Single-Machine Infinite-Bus System Model 296
10.3 Synchronizing and Damping Torques 302
10.3.1 ∆ Te2 Under Constant Field Voltage 303
10.3.2 ∆ Te2 With Excitation System Control 304
10.4 Power System Stabilizer Design using Rotor Speed Signal 307
10.4.1 PSS Design Requirements 308
10.4.2 PSS Control Blocks 309
10.4.3 PSS Design Methods 312
10.4.4 Torsional Filters 318
10.4.5 PSS Field Tuning 319
10.4.6 Interarea Mode Damping 320
10.5 Other PSS Input Signals 320
10.5.1 Generator Terminal Bus Frequency 320
10.5.2 Electrical Power Output ∆ Pe 321
10.6 Integral-of-Accelerating-Power or Dual-Input PSS 322
10.7 Summary and Notes 324
10.8 Problems 325
11 Load and Induction Motor Models 327
Joe H Chow
11.1 Introduction 327
11.2 Static Load Models 329
11.2.1 Exponential Load Model 329
11.2.2 Polynomial Load Model 330
11.3 Incorporating ZIP Load Models in Dynamic Simulation and Linear Analysis 331
11.4 Induction Motors: Steady-State Models 336
11.4.1 Physical Description 337
11.4.2 Mathematical Description 337
11.4.3 Equivalent Circuits 342
11.4.4 Per-Unit Representation 344
11.4.5 Torque-Slip Characteristics 345
11.4.6 Reactive Power Consumption 347
11.4.7 Motor Startup 348
11.5 Induction Motors: Dynamic Models 350
11.5.1 Initialization 353
11.5.2 Reactive Power Requirement during Motor Stalling 356
11.6 Summary and Notes 358
11.7 Problems 359
12 Turbine-Governor Models and Frequency Control 361
12.1 Introduction 361
12.2 Steam Turbines 362
12.2.1 Turbine Configurations 362
12.2.2 Steam Turbine Governors 365
12.3 Hydraulic Turbines 367
12.3.1 Hydraulic Turbine Governors 373
12.3.2 Load Rejection of Hydraulic Turbines 375
12.4 Gas Turbines and Co-generation Plants 376
12.5 Primary Frequency Control 378
12.5.1 Isolated Turbine-Generator Serving Local Load 379
12.5.2 Interconnected Units 384
12.5.3 Frequency Response in US Power Grids 386
12.6 Automatic Generation Control 388
12.7 Turbine-Generator Torsional Oscillations and Subsynchronous Resonance 394
12.7.1 Torsional Modes 394
12.7.2 Electrical Network Modes 401
12.7.3 SSR Occurrence and Countermeasures 404
12.8 Summary and Notes 404
12.9 Problems 405
Part III Advanced Power System Topics
13 High-Voltage Direct-Current Transmission Systems 413
Joe H Chow
13.1 Introduction 413
13.1.1 HVDC System Installations and Applications 414
13.1.2 HVDC System Economics 417
13.2 AC/DC and DC/AC Conversion 418
13.2.1 AC-DC Conversion using Ideal Diodes 419
13.2.2 Three-Phase Full-Wave Bridge Converter 420
13.3 Line-Commutation Operation in HVDC Systems 424
13.3.1 Rectifier Operation 424
13.3.2 Inverter Operation 429
13.3.3 Multiple Bridge Converters 430
13.3.4 Equivalent Circuit 431
13.4 Control Modes 433
13.4.1 Mode 1: Normal Operation 434
13.4.2 Mode 2: Reduced-Voltage Operation 435
13.4.3 Mode 3: Transitional Mode 436
13.4.4 System Operation Under Fault Conditions 438
13.4.5 Communication Requirements 439
13.5 Multi-terminal HVDC Systems 439
13.6 Harmonics and Reactive Power Requirement 441
13.6.1 Harmonic Filters 441
13.6.2 Reactive Power Support 442
13.7 AC-DC Power Flow Computation 444
13.8 Dynamic Models 450
13.8.1 Converter Control 450
13.8.2 DC Line Dynamics 452
13.8.3 AC-DC Network Solution 453
13.9 Damping Control Design 455
13.10 Summary and Notes 460
13.11 Problems 461
14 Flexible AC Transmission Systems 465
14.1 Introduction 465
14.2 Static Var Compensator (SVC) 466
14.2.1 Circuit Configuration and Thyristor Switching 466
14.2.2 Steady-State Voltage Regulation and Stability Enhancement 468
14.2.3 Dynamic Voltage Control and Droop Regulation 474
14.2.4 Dynamic Simulation 479
14.2.5 Damping Control Design using SVC 481
14.3 Thyristor-Controlled Series Compensation (TCSC) 487
14.3.1 Fixed Series Compensation 488
14.3.2 TCSC Circuit Configuration and Switching 489
14.3.3 Voltage Reversal Control 490
14.3.4 Mitigation of Subsynchronous Oscillations 492
14.3.5 Dynamic Model and Damping Control Design 492
14.4 Shunt VSC Controllers 497
14.4.1 Voltage-Sourced Converters 498
14.4.2 Static Compensator 506
14.4.3 VSC HVDC Systems 511
14.5 Series and Coupled VSC Controllers 518
14.5.1 Static Synchronous Series Compensation 518
14.5.2 Unified Power Flow Controller (UPFC) 521
14.5.3 Interline Power Flow Controller (IPFC) 526
14.5.4 Dynamic Model 530
14.6 Summary and Notes 532
14.7 Problems 532
15 Wind Power Generation and Modeling 539
Juan J Sanchez-Gasca
15.1 Background 540
15.2 Wind Turbine Components 542
15.3 Wind Power 542
15.3.1 Blade Angle Orientation 545
15.3.2 Power Coefficient 547
15.4 Wind Turbine Types 549
15.4.1 Type 1 549
15.4.2 Type 2 549
15.4.3 Type 3 550
15.4.4 Type 4 551
15.5 Steady-State Characteristics 551
15.5.1 Type-1Wind Turbine 552
15.5.2 Type-2Wind Turbine 555
15.5.3 Example 15.3 555
15.5.4 Type-3 Wind Turbine 556
15.6 Wind Power Plant Representation 559
15.7 Overall Control Criteria for Variable Speed Wind Turbines 563
15.8 Wind Turbine Model for Transient Stability Planning Studies 566
15.8.1 Overall Model Structure 567
15.8.2 Generator/Converter Model 567
15.8.3 Electrical Control Model 569
15.8.4 Drive-Train Model 571
15.8.5 Torque Control Model 574
15.8.6 Aerodynamic Model 575
15.8.7 Pitch Controller 576
15.9 Plant-Level Control Model 581
15.9.1 Simulation Example 581
15.10 Summary and Notes 582
15.11 Problems 584
16 Power System Coherency and Model Reduction 587
16.1 Introduction 587
16.2 Interarea Oscillations and Slow Coherency 589
16.2.1 Slow Coherency 590
16.2.2 Slow Coherent Areas 593
16.2.3 Finding Coherent Groups of Machines 599
16.3 Generator Aggregation and Network Reduction 602
16.3.1 Generator Aggregation 603
16.3.2 Dynamic Aggregation 606
16.3.3 Load Bus Elimination 609
16.4 Simulation Studies 614
16.4.1 Singular perturbations method 616
16.5 Linear Reduced Model Methods 617
16.5.1 Modal truncation 618
16.5.2 Balanced Model Reduction method 618
16.6 Dynamic Model Reduction Software 619
16.7 Summary and Notes 619
16.8 Problems 620
References 623
Index 635














