logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Probability: With Applications and R

Probability: With Applications and R (Hardcover, 2)

Robert P. Dobrow, Amy S. Wagaman (지은이)
John Wiley and Sons Ltd
59,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
59,000원 -0% 0원
1,770원
57,230원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Probability: With Applications and R
eBook 미리보기

책 정보

· 제목 : Probability: With Applications and R (Hardcover, 2) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781119692386
· 쪽수 : 544쪽
· 출판일 : 2021-07-07

목차

Preface xiii

Acknowledgments xvii

Introduction xix

1 First Principles 1

1.1 Random Experiment, Sample Space, Event 1

1.2 What Is a Probability? 3

1.3 Probability Function 4

1.4 Properties of Probabilities 7

1.5 Equally Likely Outcomes 11

1.6 Counting I 12

1.6.1 Permutations 13

1.7 Counting II 16

1.7.1 Combinations and Binomial Coefficients 17

1.8 Problem-Solving Strategies: Complements and

Inclusion–Exclusion 26

1.9 A First Look at Simulation 29

1.10 Summary 34

Exercises 36

2 Conditional Probability and Independence 45

2.1 Conditional Probability 45

2.2 New Information Changes the Sample Space 50

2.3 Finding P (A and B) 51

2.3.1 Birthday Problem 56

2.4 Conditioning and the Law of Total Probability 60

2.5 Bayes Formula and Inverting a Conditional Probability 67

2.6 Independence and Dependence 72

2.7 Product Spaces 80

2.8 Summary 82

Exercises 83

3 Introduction to Discrete Random Variables 93

3.1 Random Variables 93

3.2 Independent Random Variables 97

3.3 Bernoulli Sequences 99

3.4 Binomial Distribution 101

3.5 Poisson Distribution 108

3.5.1 Poisson Approximation of Binomial Distribution 113

3.5.2 Poisson as Limit of Binomial Probabilitie; 115

3.6 Summary 116

Exercises 118

4 Expectation and More with Discrete Random Variables 125

4.1 Expectation 127

4.2 Functions of Random Variables 130

4.3 Joint Distributions 134

4.4 Independent Random Variables 139

4.4.1 Sums of Independent Random Variables 142

4.5 Linearity of Expectation 144

4.6 Variance and Standard Deviation 149

4.7 Covariance and Correlation 158

4.8 Conditional Distribution 165

4.8.1 Introduction to Conditional Expectation 168

4.9 Properties of Covariance and Correlation 171

4.10 Expectation of a Function of a Random Variable 173

4.11 Summary 174

Exercises 176

5 More Discrete Distributions and Their Relationships 185

5.1 Geometric Distribution 185

5.1.1 Memorylessness 188

5.1.2 Coupon Collecting and Tiger Counting 189

5.2 Moment-Generating Functions 193

5.3 Negative Binomial—Up from the Geometric 196

5.4 Hypergeometric—Sampling Without Replacement 202

5.5 From Binomial to Multinomial 207

5.6 Benford’s Law 213

5.7 Summary 216

Exercises 218

6 Continuous Probability 227

6.1 Probability Density Function 229

6.2 Cumulative Distribution Function 233

6.3 Expectation and Variance 237

6.4 Uniform Distribution 239

6.5 Exponential Distribution 242

6.5.1 Memorylessness 243

6.6 Joint Distributions 247

6.7 Independence 256

6.7.1 Accept–Reject Method 258

6.8 Covariance, Correlation 262

6.9 Summary 264

Exercises 266

7 Continuous Distributions 273

7.1 Normal Distribution 273

7.1.1 Standard Normal Distribution 276

7.1.2 Normal Approximation of Binomial Distribution 278

7.1.3 Quantiles 282

7.1.4 Sums of Independent Normals 285

7.2 Gamma Distribution 288

7.2.1 Probability as a Technique of Integration 292

7.3 Poisson Process 294

7.4 Beta Distribution 302

7.5 Pareto Distribution 305

7.6 Summary 308

Exercises 311

8 Densities of Functions of Random Variables 319

8.1 Densities via CDFs 320

8.1.1 Simulating a Continuous Random Variable 326

8.1.2 Method of Transformations 329

8.2 Maximums, Minimums, and Order Statistics 330

8.3 Convolution 335

8.4 Geometric Probability 338

8.5 Transformations of Two Random Variables 344

8.6 Summary 348

Exercises 349

9 Conditional Distribution, Expectation, and Variance 357

Introduction 357

9.1 Conditional Distributions 358

9.2 Discrete and Continuous: Mixing it Up 364

9.3 Conditional Expectation 369

9.3.1 From Function to Random Variable 371

9.3.2 Random Sum of Random Variables 378

9.4 Computing Probabilities by Conditioning 378

9.5 Conditional Variance 382

9.6 Bivariate Normal Distribution 387

9.7 Summary 396

Exercises 398

10 LIMITS 407

10.1 Weak Law of Large Numbers 409

10.1.1 Markov and Chebyshev Inequalities 411

10.2 Strong Law of Large Numbers 415

10.3 Method of Moments 421

10.4 Monte Carlo Integration 424

10.5 Central Limit Theorem 428

10.5.1 Central Limit Theorem and Monte Carlo 436

10.6 A Proof of the Central Limit Theorem 437

10.7 Summary 439

Exercises 440

11 Beyond Random Walks and Markov Chains 447

11.1 Random Walk on Graphs 447

11.1.1 Long-Term Behavior 451

11.2 Random Walks on Weighted Graphs and Markov Chains 455

11.2.1 Stationary Distribution 458

11.3 From Markov Chain to Markov Chain Monte Carlo 462

11.4 Summary 474

Exercises 476

Appendix A Probability Distributions in R 481

Appendix B Summary of Probability Distributions 483

Appendix C Mathematical Reminders 487

Appendix D Working with Joint Distributions 489

Solutions 497

References 511

Index 515

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책