logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

In Vivo Magnetic Resonance: An Introduction to Spin Physics, Relaxation Theory and Contrast Mechanisms

In Vivo Magnetic Resonance: An Introduction to Spin Physics, Relaxation Theory and Contrast Mechanisms (Paperback, 1st)

Daniel M. Spielman, Keshav Datta (지은이)
Wiley
59,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
59,000원 -0% 0원
1,770원
57,230원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

In Vivo Magnetic Resonance: An Introduction to Spin Physics, Relaxation Theory and Contrast Mechanisms
eBook 미리보기

책 정보

· 제목 : In Vivo Magnetic Resonance: An Introduction to Spin Physics, Relaxation Theory and Contrast Mechanisms (Paperback, 1st) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 생명과학 > 생물 물리학
· ISBN : 9781394233090
· 쪽수 : 288쪽
· 출판일 : 2024-04-30

목차

Chapter 1. Introduction

1.1. A Brief History of MR

1.2. NMR vs MRI

1.3. The Roadmap

1.4. Historical Notes

 

Chapter 2. Classical Description of MR

2.1. Nuclear Magnetism

2.2. Net Magnetization and the Bloch Equations

2.3. Rf Excitation and Reception

2.4. Spatial Localization

2.5. The MRI Signal Equation

2.6. Exercises

2.7. Historical Notes

 

Chapter 3. Quantum Description of MR

3.1. Introduction

3.1.1. Why QM for magnetic resonance?

3.1.2. Historical developments

3.1.3. Wavefunctions

3.2. Mathematics of QM

3.2.1. Linear vector spaces

3.2.2. Dirac notation and Hilbert Space

3.2.3. Liouville Space

3.3. The Six Postulates of QM

 

3.4. MR in Hilbert Space

3.4.1. Review of spin operators

3.4.2. Single spin in a magnetic field: longitudinal and transverse magnetization

3.4.3. Ensemble of spins in a magnetic field

3.5. MR in Liouville Space

3.5.1. Statistical mixture of quantum states

3.5.2. The density operator

3.5.3. The Spin-lattice Disconnect

3.5.4. Hilbert space vs Liouville space

3.5.5. Observations about the spin density operator

3.5.6. Solving the Liouville-von Neuman equation

3.6. Exercises

3.7. Historical Notes

 

Chapter 4. Nuclear Spins

4.1. Review of the Spin Density Operator and the Hamiltonian

4.2. External Interactions

4.3. Internal Interactions

4.3.1. Chemical shift

4.3.2. Dipolar coupling

4.3.3. J-coupling

4.4. Summary of the Nuclear Spin Hamiltonian

4.5. Exercises

4.6. Historical Notes

 

Chapter 5. Product Operator Formulism

5.1. The Density Operator, Populations, and Coherences

5.1.1. Spin systems and associated density operators

5.1.2. Density matrix calculations

5.2. POF for Single-Spin Coherence Space

5.3. POF for Two-Spin Coherence Space

5.4. Branch Diagrams

5.5. Multiple Quantum Coherences and 2D NMR

5.6. Polarization Transfer

5.7. Spectral Editing

5.7.1. J-difference editing

5.7.2. Multiple quantum filtering

5.8. Exercises

5.9. Historical Notes

 

Chapter 6. In vivo MRS

6.1. 1H MRS

6.1.1. Acquisition methods

6.1.2. Detectable metabolites and applications

6.2. 31P-MRS

6.3. 13C-MRS

6.3.1. Acquisition methods

6.3.2. 13C infusion studies

6.3.3. Hyperpolarized 13C

6.4. Deuterium Metabolic Imaging

6.5. 23Na-MRI

6.6. Exercises

 

Chapter 7. Relaxation Fundamentals

7.1. Basic Principles

7.1.1. Molecular motion

7.1.2. Stochastic processes

7.1.3. A simple model of relaxation

7.2. Dipolar Coupling

7.2.1. The Solomon equations

7.2.2. Calculating transition rates

7.2.3. Nuclear Overhauser Effect

7.3. Chemical Exchange

7.3.1. Introduction

7.3.2. Effects on longitudinal magnetization

7.3.3. Effects on transverse magnetization

7.3.4. Examples

7.4. In vivo Water

7.4.1. Hydration layers

7.4.2. Tissue relaxation times

7.4.3. Magic angle effects

7.4.4. Magnetization Transfer Contrast (MTC)

7.4.5. Chemical Exchange Saturation Transfer (CEST)

7.5. Exercises

7.6. Historical Notes

 

Chapter 8. Redfield Theory of Relaxation

8.1. Perturbation theory and the Interaction Frame of Reference

8.2. Calculating Relaxation Times

8.3. Relaxation mechanisms

8.3.1. Dipolar coupling revisited

8.3.2. Scalar relaxation of the 1st kind and 2nd kind

8.3.3. Chemical Shift Anisotropy (CSA)

8.4. Relaxation in the Rotating Frame

8.4.1. Physics of T1r

8.4.2. The spin-lock experiment

8.4.3. Applications

8.5. Illustrative Examples

8.5.1. Hyperpolarized 13C-urea

8.5.2. Hyperpolarized 13C-Pyr

8.6. Exercises

8.7. Historical Notes

 

Chapter 9. MRI Contrast Agents

9.1. Paramagnetic Relaxation Enhancement

9.1.1. Solomon-Bloembergen-Morgan theory

9.1.2. Gd3+-based T1 contrast agents

9.2. T2 and T2* Contrast Agents

9.2.1. T2, diffusion, and outer-sphere relaxation

9.2.2. SPIOs and USPIOs

9.3. PARACEST Contrast Agents

9.4. Contrast Agents in the Clinic

9.4.1. Gd-based agents

9.4.2. Iron-based agents

9.5. Exercises

 

Chapter 10. In vivo Examples

10.1. Relaxation properties of brain

10.1.1. Morphological imaging

10.1.2. Perfusion imaging

10.1.3. Diffusion-Weighted Imaging (DWI)

10.1.4. Imaging myelin

10.1.5. Susceptibility-Weighted Imaging (SWI)

10.2. Relaxation properties of blood

10.2.1. Hemoglobin and red blood cells

10.2.2. MRI blood oximetry

10.2.3. functional Magnetic Resonance Imaging (fMRI)

10.2.4. MRI of hemorrhage

10.3. Relaxation properties of cartilage

10.3.1. T2 mapping

10.3.2. DWI

10.3.3. T1r mapping and dispersion

10.3.4. gagCEST

10.3.5. dGEMRIC

10.3.6. Ultrashort TE (UTE) imaging

10.3.7. Sodium MRI

10.3.8. Summary

10.4. Synopsis

10.5. Exercises

 

Exercise Solutions

References

Index

저자소개

Daniel M. Spielman (지은이)    정보 더보기
펼치기
Keshav Datta (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책