책 이미지
책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 지구과학 > 수문학
· ISBN : 9781402066818
· 쪽수 : 834쪽
· 출판일 : 2009-12-18
목차
Preface List of Main Symbols 1 INTRODUCTION 1.1 Role of Groundwater in Water Resources Systems 1.1.1 The hydrological cycle 1.1.2 Surface water versus groundwater 1.1.3 Characteristics of groundwater 1.1.4 Functions of aquifers 1.1.5 Subsurface contamination 1.1.6 Sustainable yield 1.2 Modeling 1.2.1 Modeling concepts 1.2.2 Modeling process 1.2.3. Model use 1.3 Continuum Approach to Transport in Porous Media 1.3.1 Phases, chemical species and components 1.3.2 Need for a continuum approach 1.3.3 Representative elementary volume and averages 1.3.4 Scale of heterogeneity in continuum models 1.3.5 Homogenization 1.4 Scope and Organization 2 GROUNDWATER AND AQUIFERS 2.1 Definitions of Aquifers 2.2 Moisture Distribution in a Vertical Soil Profile 2.3 Classification of Aquifers 2.4 Solid Matrix Properties 2.4.1 Soil classification based on grain size distribution 2.4.2 Porosity and void ratio 2.4.3 Specific surface 2.5 Inhomogeneity and Anisotropy 2.6 Hydraulic Approach to Flow in Aquifers 3 REGIONAL GROUNDWATER BALANCE 3.1 Groundwater Flow and Leakage 3.1.1 Inflow and outflow through aquifer boundaries 3.1.2 Leakage 3.2 Natural Replenishment from Precipitation 3.3 Return Flow from Irrigation and Sewage 3.4 Artificial Recharge 3.4.1 Objectives 3.4.2 Methods 3.5 River-Aquifer Interrelationships 3.6 Springs 3.7 Evapotranspiration 3.8 Pumping and Drainage 3.9 Change in Storage 3.10 Regional Groundwater Balance 4 GROUNDWATER MOTION 4.1 Darcy's Law 4.1.1 The empirical law 4.1.2 Extension to a three-dimensional space 4.1.3 Hydraulic conductivity 4.1.4 Extension to anisotropic porous media 4.2 Darcy's Law as Momentum Balance Equation 4.2.1 Darcy's law by volume averaging 4.2.2 Darcy's law by homogenization 4.2.3 Effective hydraulic conductivity by homogenization 4.3 Non-Darcy Laws 4.3.1 Range of validity of Darcy's law 4.3.2 Non-Darcian motion equations 4.4 Aquifer Transmissivity 4.5 Dupuit Assumption for a Phreatic Aquifer 5 WATER BALANCES AND COMPLETE FLOW MODEL5.1 Mass Balance Equations 5.1.1 Fundamental mass balance equation 5.1.2 Deformable porous medium 5.1.3 Specific storativity 5.1.4 Flow equations 5.2 Initial and Boundary Conditions 5.2.1 Boundary surface 5.2.2 Initial and general boundary conditions 5.2.3 Particular boundary conditions 5.3 Complete 3-D Mathematical Flow Model 5.3.1 Well-posed problem 5.3.2 Conceptual model 5.3.3 Standard content of a flow model 5.4 Modeling 2-D Flow in Aquifers 5.4.1 Deriving the 2-D balance equations by integration 5.4.2 Another derivation of the 2-D balance equations 5.4.3 Complete aquifer flow models 5.4.4 Effect of storage changes in an aquitard 5.4.5 Multilayered aquifer-aquitard system 5.4.6 Groundwater maps and streamlines 5.5 Land Subsidence 5.5.1 Integrated water mass balance equation 5.5.2 Integrated equilibrium equation 5.5.3 Terzaghi-Jacob vs. Biot approaches 5.5.4 Land subsidence produced by pumping 6 MODELING FLOW IN THE UNSATURATED ZONE 6.1 Statics of Fluids in the Unsaturated Zone 6.1.1 Water content 6.1.2 Surface tension 6.1.3 Capillary pressure 6.1.4 Retention curve 6.1.5 Experimental determination of














