logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Applied Medical Statistics Using SAS

Applied Medical Statistics Using SAS (Hardcover)

Geoff Der, Brian S. Everitt (지은이)
Chapman & Hall
340,750원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
279,410원 -18% 0원
13,980원
265,430원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Applied Medical Statistics Using SAS
eBook 미리보기

책 정보

· 제목 : Applied Medical Statistics Using SAS (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781439867976
· 쪽수 : 559쪽
· 출판일 : 2012-10-01

목차

An Introduction to SAS
Introduction
The User Interface
SAS Programs
Reading Data?The Data Step
Modifying SAS Data
The Proc Step
Global Statements
SAS Graphics
ODS?The Output Delivery System
Saving Output in SAS Data Sets?ods output
Enhancing Output
SAS Macros
Some Tips for Preventing and Correcting Errors

Statistics and Measurement in Medicine

Introduction
A Brief History of Medical Statistics
Measurement in Medicine
Assessing Bias and Reliability of Measurements
Diagnostic Tests
Summary

Clinical Trials

Introduction
Clinical Trials
How Many Participants Do I Need in My Trial?
The Analysis of Data from Clinical Trials
Summary

Epidemiology

Introduction
Types of Epidemiological Study
Relative Risk and Odds Ratios
Sample Size Estimation for Epidemiologic Studies
Simple Analyses for Data from Observational Studies
Summary

Meta-analysis

Introduction
Study Selection
Publication Bias
The Statistics of Meta-analysis
An Example of the Application of Meta-analysis
Meta-analysis on Sparse Data
Metaregression
Summary

Analysis of Variance and Covariance

Introduction
A Simple Example of One-Way Analysis of Variance
Multiple Comparison Procedures
A Factorial Experiment
Unbalanced Designs
Nonparametric Analysis of Variance
Analysis of Covariance
Summary

Scatter Plots, Correlation, Simple Regression, and Smoothing

Introduction
The Scatter Plot and Correlation Coefficient
Simple Linear Regression and Locally Weighted Regression
Locally Weighted Regression
The Aspect Ratio of a Scatter Plot
Estimating Bivariate Densities
Scatter Plot Matrices
Summary

Multiple Linear Regression

Introduction
The Multiple Linear Regression Model
Some Examples of the Application of the Multiple Linear Regression Model
Identifying a Parsimonious Model
Checking Model Assumptions: Residuals and Other
Regression Diagnostics
The General Linear Model
Summary

Logistic Regression

Introduction
Logistic Regression
Two Examples of the Application of Logistic Regression
Diagnosing a Logistic Regression Model
Logistic Regression for 1:1 Matched Studies
Propensity Scores
Summary

The Generalised Linear Model

Introduction
Generalised Linear Models
Applying the Generalised Linear Model
Residuals for GLMs
Overdispersion
Summary

Generalised Additive Models

Introduction
Scatter Plot Smoothers
Additive and Generalised Additive Models
Examples of the Application of GAMs
Summary

The Analysis of Longitudinal Data I

Introduction
Graphical Displays of Longitudinal Data
Summary Measure Analysis of Longitudinal Data
Summary Measure Approach for Binary Responses
Summary

The Analysis of Longitudinal Data II: Linear Mixed-Effects Models for Normal Response Variables

Introduction
Linear Mixed-Effects Models for Repeated Measures Data
Dropouts in Longitudinal Data
Summary

The Analysis of Longitudinal Data III: Non-Normal Responses

Introduction
Marginal Models and Conditional Models
Analysis of the Respiratory Data
Analysis of Epilepsy Data
Summary

Survival Analysis

Introduction
The Survivor Function and the Hazard Function
Comparing Groups of Survival Times
Sample Size Estimation
Summary

Cox’s Proportional Hazards Models for Survival Data

Introduction
Modelling the Hazard Function: Cox’s Regression
Time-Varying Covariates
Random-Effects Models for Survival Data
Summary

Bayesian Methods

Introduction
Bayesian Estimation
Markov Chain Monte Carlo
Prior Distributions
Model Selection When Using a Bayesian Approach
Some Examples of the Application of Bayesian Statistics
Summary

Missing Values

Introduction
Patterns of Missing Data
Missing Data Mechanisms
Exploring Missingness
Dealing with Missing Values
Imputing Missing Values
Analysing Multiply Imputed Data
Some Examples of the Application of Multiple Imputation
Summary

References

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책