logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Modern Geometry-- Methods and Applications: Part II: The Geometry and Topology of Manifolds

Modern Geometry-- Methods and Applications: Part II: The Geometry and Topology of Manifolds (Paperback, Softcover Repri)

S. P. Novikov, A. T. Fomenko, B. A. Dubrovin (지은이)
Springer Verlag
139,900원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
114,710원 -18% 0원
5,740원
108,970원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Modern Geometry-- Methods and Applications: Part II: The Geometry and Topology of Manifolds
eBook 미리보기

책 정보

· 제목 : Modern Geometry-- Methods and Applications: Part II: The Geometry and Topology of Manifolds (Paperback, Softcover Repri) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 위상기하학
· ISBN : 9781461270119
· 쪽수 : 432쪽
· 출판일 : 2012-09-30

목차

1 Examples of Manifolds.- 1. The concept of a manifold.- 1.1. Definition of a manifold.- 1.2. Mappings of manifolds; tensors on manifolds.- 1.3. Embeddings and immersions of manifolds. Manifolds with boundary.- 2. The simplest examples of manifolds.- 2.1. Surfaces in Euclidean space. Transformation groups as manifolds.- 2.2. Projective spaces.- 2.3. Exercises.- 3. Essential facts from the theory of Lie groups.- 3.1. The structure of a neighbourhood of the identity of a Lie group. The Lie algebra of a Lie group. Semisimplicity.- 3.2. The concept of a linear representation. An example of a non-matrix Lie group.- 4. Complex manifolds.- 4.1. Definitions and examples.- 4.2. Riemann surfaces as manifolds.- 5. The simplest homogeneous spaces.- 5.1. Action of a group on a manifold.- 5.2. Examples of homogeneous spaces.- 5.3. Exercises.- 6. Spaces of constant curvature (symmetric spaces).- 6.1. The concept of a symmetric space.- 6.2. The isometry group of a manifold. Properties of its Lie algebra.- 6.3. Symmetric spaces of the first and second types.- 6.4. Lie groups as symmetric spaces.- 6.5. Constructing symmetric spaces. Examples.- 6.6. Exercises.- 7. Vector bundles on a manifold.- 7.1. Constructions involving tangent vectors.- 7.2. The normal vector bundle on a submanifold.- 2 Foundational Questions. Essential Facts Concerning Functions on a Manifold. Typical Smooth Mappings.- 8. Partitions of unity and their applications.- 8.1. Partitions of unity.- 8.2. The simplest applications of partitions of unity. Integrals over a manifold and the general Stokes formula.- 8.3. Invariant metrics.- 9. The realization of compact manifolds as surfaces in ?N.- 10. Various properties of smooth maps of manifolds.- 10.1. Approximation of continuous mappings by smooth ones.- 10.2. Sard's theorem.- 10.3. Transversal regularity.- 10.4. Morse functions 86 .- 11. Applications of Sard's theorem.- 11.1. The existence of embeddings and immersions.- 11.2. The construction of Morse functions as height functions.- 11.3. Focal points.- 3 The Degree of a Mapping. The Intersection Index of Submanifolds. Applications.- 12. The concept of homotopy.- 12.1. Definition of homotopy. Approximation of continuous maps and homotopies by smooth ones.- 12.2. Relative homotopies.- 13. The degree of a map.- 13.1. Definition of degree.- 13.2. Generalizations of the concept of degree.- 13.3. Classification of homotopy classes of maps from an arbitrary manifold to a sphere.- 13.4. The simplest examples.- 14. Applications of the degree of a mapping.- 14.1. The relationship between degree and integral.- 14.2. The degree of a vector field on a hypersurface.- 14.3. The Whitney number. The Gauss-Bonnet formula.- 14.4. The index of a singular point of a vector field.- 14.5. Transverse surfaces of a vector field. The Poincare-Bendixson theorem.- 15. The intersection index and applications.- 15.1. Definition of the intersection index.- 15.2. The total index of a vector field.- 15.3. The signed number of fixed points of a self-map (the Lefschetz number). The Brouwer fixed-point theorem.- 15.4. The linking coefficient.- 4 Orientability of Manifolds. The Fundamental Group. Covering Spaces (Fibre Bundles with Discrete Fibre).- 16. Orientability and homotopies of closed paths.- 16.1. Transporting an orientation along a path.- 16.2. Examples of non-orientable manifolds.- 17. The fundamental group.- 17.1. Definition of the fundamental group.- 17.2. The dependence on the base point.- 17.3. Free homotopy classes of maps of the circle.- 17.4. Homotopic equivalence.- 17.5. Examples.- 17.6. The fundamental group and orientability.- 18. Covering maps and covering homotopies.- 18.1. The definition and basic properties of covering spaces.- 18.2. The simplest examples. The universal covering.- 18.3. Branched coverings. Riemann surfaces.- 18.4. Covering maps and discrete groups of transformations.- 19. Covering maps and the fundamental group. Computation of the fundamental group of ce

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책