logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Modern Geometry -- Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields

Modern Geometry -- Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Paperback, 2, 1992. Softcover)

A. T. Fomenko, B. A. Dubrovin, S.p. Novikov (지은이), R. G. Burns (옮긴이)
Springer Verlag
122,140원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
100,150원 -18% 0원
5,010원
95,140원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 1개 50,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Modern Geometry -- Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields
eBook 미리보기

책 정보

· 제목 : Modern Geometry -- Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Paperback, 2, 1992. Softcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 미적분학
· ISBN : 9781461287568
· 쪽수 : 470쪽
· 출판일 : 2011-10-28

목차

1 Geometry in Regions of a Space. Basic Concepts.- 1. Co-ordinate systems.- 1.1. Cartesian co-ordinates in a space.- 1.2. Co-ordinate changes.- 2. Euclidean space.- 2.1. Curves in Euclidean space.- 2.2. Quadratic forms and vectors.- 3. Riemannian and pseudo-Riemannian spaces.- 3.1. Riemannian metrics.- 3.2. The Minkowski metric.- 4. The simplest groups of transformations of Euclidean space.- 4.1. Groups of transformations of a region.- 4.2. Transformations of the plane.- 4.3. The isometries of 3-dimensional Euclidean space.- 4.4. Further examples of transformation groups.- 4.5. Exercises.- 5. The Serret-Frenet formulae.- 5.1. Curvature of curves in the Euclidean plane.- 5.2. Curves in Euclidean 3-space. Curvature and torsion.- 5.3. Orthogonal transformations depending on a parameter.- 5.4. Exercises.- 6. Pseudo-Euclidean spaces.- 6.1. The simplest concepts of the special theory of relativity.- 6.2. Lorentz transformations.- 6.3. Exercises.- 2 The Theory of Surfaces.- 7. Geometry on a surface in space.- 7.1. Co-ordinates on a surface.- 7.2. Tangent planes.- 7.3. The metric on a surface in Euclidean space.- 7.4. Surface area.- 7.5. Exercises.- 8. The second fundamental form.- 8.1. Curvature of curves on a surface in Euclidean space.- 8.2. Invariants of a pair of quadratic forms.- 8.3. Properties of the second fundamental form.- 8.4. Exercises.- 9. The metric on the sphere.- 10. Space-like surfaces in pseudo-Euclidean space.- 10.1. The pseudo-sphere.- 10.2. Curvature of space-like curves in $$ \mathbb{R}_1^3 $$.- 11. The language of complex numbers in geometry.- 11.1. Complex and real co-ordinates.- 11.2. The Hermitian scalar product.- 11.3. Examples of complex transformation groups.- 12. Analytic functions.- 12.1. Complex notation for the element of length, and for the differential of a function.- 12.2. Complex co-ordinate changes.- 12.3. Surfaces in complex space.- 13. The conformal form of the metric on a surface.- 13.1. Isothermal co-ordinates. Gaussian curvature in terms of conformal co-ordinates.- 13.2. Conformal form of the metrics on the sphere and the Lobachevskian plane.- 13.3. Surfaces of constant curvature.- 13.4. Exercises.- 14. Transformation groups as surfaces in N-dimensional space.- 14.1. Co-ordinates in a neighbourhood of the identity.- 14.2. The exponential function with matrix argument.- 14.3. The quaternions.- 14.4. Exercises.- 15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.- 16. Examples of tensors.- 17. The general definition of a tensor.- 17.1. The transformation rule for the components of a tensor of arbitrary rank.- 17.2. Algebraic operations on tensors.- 17.3. Exercises.- 18. Tensors of type (0, k).- 18.1. Differential notation for tensors with lower indices only.- 18.2. Skew-symmetric tensors of type (0, k).- 18.3. The exterior product of differential forms. The exterior algebra.- 18.4. Skew-symmetric tensors of type (k, 0) (polyvectors). Integrals with respect to anti-commuting variables.- 18.5. Exercises.- 19. Tensors in Riemannian and pseudo-Riemannian spaces.- 19.1. Raising and lowering indices.- 19.2. The eigenvalues of a quadratic form.- 19.3. The operator ?.- 19.4. Tensors in Euclidean space.- 19.5. Exercises.- 20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.- 21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- 21.1. Skew-symmetric tensors. The invariants of an electromagnetic field.- 21.2. Symmetric tensors and their eigenvalues. The energy-momentum tensor of an electromagnetic field.- 22. The behaviour of tensors under mappings.- 22.1. The general operation of restriction of tensors with lower indices.- 22.2. Mappings of tangent spaces.- 23. Vector fields.- 23.1. One-parameter groups of diffeomorphisms.- 23.2. The exponential function of a vector field.- 23.3. The Lie derivative.- 23.4. Exer

저자소개

S.p. Novikov (지은이)    정보 더보기
펼치기
R. G. Burns (옮긴이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책