logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Introduction to Calculus and Analysis: Volume I

Introduction to Calculus and Analysis: Volume I (Paperback, Softcover Repri)

리차드 쿠랑, Fritz John (지은이)
Springer Verlag
181,910원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Introduction to Calculus and Analysis: Volume I
eBook 미리보기

책 정보

· 제목 : Introduction to Calculus and Analysis: Volume I (Paperback, Softcover Repri) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 미적분학
· ISBN : 9781461389576
· 쪽수 : 684쪽
· 출판일 : 2011-11-08

목차

1 Introduction.- 1.1 The Continuum of Numbers.- a. The System of Natural Numbers and Its Extension. Counting and Measuring, 1 b. Real Numbers and Nested Intervals, 7 c. Decimal Fractions. Bases Other Than Ten, 9 d. Definition of Neighborhood, 12 e. Inequalities, 12.- 1.2 The Concept of Function.- a. Mapping-Graph, 18 b. Definition of the Concept of Functions of a Continuous Variable. Domain and Range of a Function, 21 c. Graphical Representation. Monotonic Functions, 24 d. Continuity, 31 e. The Intermediate Value Theorem. Inverse Functions, 44.- 1.3 The Elementary Functions.- a. Rational Functions, 47 b. Algebraic Functions, 49 c. Trigonometric Functions, 49 d. The Exponential Function and the Logarithm, 51 e. Compound Functions, Symbolic Products, Inverse Functions, 52.- 1.4 Sequences.- 1.5 Mathematical Induction.- 1.6 The Limit of a Sequence.- a. $${a_n} = rac{1}{n}$$, 61 b. $${a_{2m}} = rac{1}{m}$$; 62 c. $${a_{2m - 1}} = rac{1}{{2m}}$$ 63 d. $${a_n} = \sqrt[n]{p}$$, 64 e.an=?n 65 f. Geometrical Illustration of the Limits of ?nand $$\sqrt[n]{p}$$ 65 g. The Geometric Series, 67 h. $${a_n} = \sqrt[n]{n}$$, 67 i. $${a_n} = \sqrt {n + 1} - \sqrt n $$, 69.- 1.7 Further Discussion of the Concept of Limit.- a. Definition of Convergence and Divergence, 70 b. Rational Operations with Limits, 71 c. Intrinsic Convergence Tests. Monotone Sequences, 73 d. Infinite Series and the Summation Symbol, 75 e. The Number e, 77 f. The Number ? as a Limit, 80.- 1.8 The Concept of Limit for Functions of a Continuous Variable.- a. Some Remarks about the Elementary Functions, 86.- Supplements.- S.1 Limits and the Number Concept.- a. The Rational Numbers, 89 b. Real Numbers Determined by Nested Sequences of Rational Intervals, 90 c. Order, Limits, and Arithmetic Operations for Real Numbers, 92 d. Completeness of the Number Continuum. Compactness of Closed Intervals. Convergence Criteria, 94 e. Least Upper Bound and Greatest Lower Bound, 97 f. Denumerability of the Rational Numbers, 98.- S.2 Theorems on Continuous Functions.- S.3 Polar Coordinates.- S.4 Remarks on Complex Numbers.- Problems.- 2 The Fundamental Ideas of the Integral and Differential Calculus.- 2.1 The Integral.- a. Introduction, 120 b. The Integral as an Area, 121 c. Analytic Definition of the Integral. Notations, 122.- 2.2 Elementary Examples of Integration.- a. Integration of Linear Function, 128 b. Integration of x2, 130 c. Integration of x? for Integers ? ? 1, 131 d. Integration of x? for Rational ? Other Than -1, 134 e. Integration of sin x and cos x, 135.- 2.3 Fundamental Rules of Integration.- a. Additivity, 136 b. Integral of a Sum of a Product with a Constant, 137 c. Estimating Integrals, 138, d. The Mean Value Theorem for Integrals, 139.- 2.4 The Integral as a Function of the Upper Limit (Indefinite Integral).- 2.5 Logarithm Defined by an Integral.- a. Definition of the Logarithm Function, 145 b. The Addition Theorem for Logarithms, 147.- 2.6 Exponential Function and Powers.- a. The Logarithm of the Number e, 149 b. The Inverse Function of the Logarithm. The Exponential Function, 150 c. The Exponential Function as Limit of Powers, 152 d. Definition of Arbitrary Powers of Positive Numbers, 152 e. Logarithms to Any Base, 153.- 2.7 The Integral of an Arbitrary Power of x.- 2.8 The Derivative.- a. The Derivative and the Tangent, 156 b. The Derivative as a Velocity, 162 c. Examples of Differentiation, 163 d. Some Fundamental Rules for Differentiation, 165 e. Differentiability and Continuity of Functions, 166 f. Higher Derivatives and Their Significance, 169 g. Derivative and Difference Quotient. Leibnitz's Notation, 171 h. The Mean Value Theorem of Differential Calculus, 173 i. Proof of the Theorem, 175 j. The Approximation of Functions by Linear Functions. Definition of Differentials, 179 k. Remarks on Applications to the Natural Sciences, 183.- 2.9 The Integral, the Primitive Function, and theFundamental Theorems of the Calculus.- a. The Derivative of the Integral, 184 b.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책