logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami

Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (Paperback)

로버트 J. 랭 (지은이)
A K Peters Ltd
180,650원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
148,130원 -18% 0원
7,410원
140,720원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
eBook 미리보기

책 정보

· 제목 : Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 기하학 일반
· ISBN : 9781568812328
· 쪽수 : 776쪽
· 출판일 : 2018-03-01

목차

Introduction

Genesis

What to Expect, What You Need

Vertices

Modeling Origami

Crease Patterns

Creases and Folds

Vertices

Kawasaki-Justin Theorem

Justin Ordering Conditions

Three-Facet Theorem

Big-Little-Big Angle Theorem

Maekawa-Justin Theorem

Vertex Type

Vertex Validity

Degree- Vertices

Degree- Vertices

Unique Smallest Sector

Two Consecutive Smallest Sectors

Four Equal Sectors

Constructing Degree- Vertices

Half-Plane Properties

Multivertex Flat-Foldability

Isometry Conditions and Semifoldability

Injectivity Conditions and Non-Twist Relation

Local Flat-Foldability Graph

Vector Formulations of Vertices

Vector Notation: Points

Vector Notation: Lines

Translation

Rotation

Reection

Line Intersection

2D Developability

2D Flat-Foldability

Analytic vs Numerical

Terms

Periodicity

Repeating Vertices

1D Periodicity

Periodicity and Symmetry

Tiles

Linear Chains

2D Periodicity

Hu_man Grid

Yoshimura Pattern

Miura-ori

Miura-ori Variations

Barreto's Mars

Generalized Mars

Partial Periodicity

Yoshimura-Miura Hybrids

Semigeneralized Miura-ori

Predistortion

Tachi-Miura Mechanisms

Triangulated Cylinders

Triangulated Cylinder Geometry

Waterbomb Tessellation

Troublewit and Pleats

Corrugations and More

Terms

Simple Twists

Twist-Based Tessellations

Folding a Twist

Diagrams Versus Crease Patterns

A Square Twist Tessellation

Elements of a Twist

Regular Polygonal Twists

Cyclic Regular Twists

Open and Closed Back Twists

Rotation Angle of the Central Polygon

Iso-Area Twists

Twist Flat-Foldability

Local Flat-Foldability

Pleat Crease Parity

Pleat Assignments

mm=vv Condition

mv=vm Condition

MM=V V Condition

MV=VM Condition

Cyclic Overlap Conditions

Summary of Limits

General Polygonal Twists

Triangle Twists

Higher Order Irregular Twists

Cyclic Overlaps in Irregular Twists

Closed Back Irregular Twists

Joining Twists

Terms

Twist Tiles

Introduction to Twist Tiles

What is a Tile?

Ways of Mating

Centered Twist Tiles

O_set Twist Tiles

Vertex Types

Vertices and Angles

Unit Polygons

Centered Twist Tiles

O_set Twist Tiles

Folded Form Tiles

Centered Twist Folded Form Tiles

O_set Twist Folded Form Tiles

Triangle Tiles

Centered Twist Triangle Tiles

O_set Twist Triangle Tiles

Higher-Order Polygon Tiles

Centered Twist Cyclic Polygon Tiles

Cyclic Polygon Construction

Quadrilateral O_set Twist Polygon Tiles

O_set Twist Higher-Order Polygon Tiles

Pathological Twist Tiles

Split-Twist Quadrilateral Tiles

Terms

Tilings

Introduction to Tilings

Archimedean Tilings

Uniform Tilings

Constructing Archimedean Tilings

Lattice Patches and Vectors

Edge-Oriented Tilings

Centered Twist Tiles

O_set Twist Tiles

k-Uniform Tilings

-Uniform Tilings

Two-Colorable -Uniform Tilings

Higher-Order Uniform Tilings

Periodic Tilings with Other Shapes

Gridded Tessellations

Non-Periodic Tilings

Goldberg Tiling

Self-Similar Tilings

Terms

Primal-Dual Tessellations

Introduction

Shrink and Rotate

Twist and Aspect Ratio

Crease Pattern/Folded Form Duality

Nonregular Polygons

A Broken Tessellation

Dual Graphs and Interior Duals

A Valid Rhombus Tessellation

Relation Between Primal and Dual Graphs

Maxwell's Reciprocal Figures

Indeterminateness and Impossibility

Positive and Negative Edge Lengths

Crease Assignment

Triangle Graphs

Voronoi and Delaunay

Flagstone Tessellations

Spiderwebs Revisited

The Flagstone Geometry

Flagstone Vertex Construction

Examples

Woven Tessellations

Woven Concepts

Simple Woven Patterns

Woven Algorithm

Flat Unfoldability

Woven Algorithm, Continued

Woven Examples

Terms

Rigid Foldability

Half-Open Vertices

Spherical Geometry

A Degree- Vertex in Spherical Geometry

Opposite Fold Angles

Adjacent Fold Angles

Conditions on Rigid Foldability

The Weighted Fold Angle Graph

Distinctness of Fold Angle

Matching Fold Angle

General Twists

Triangle Twists

Mechanical Advantage

Non-Twist Folds

Quadrilateral Meshes

Non-Flat-Foldable Vertices

Terms

Spherical Vertices

The Gaussian Sphere

Plane Orientation

The Trace

Polyhedral Vertices

A Degree- Vertex

Sector and Fold Angles

Osculating Plane

Binding Conditions

Ruling Plane

Real Space Solid Angle

Ruling Angle

Osculating Angle

Adjacent Fold Angles

Flat-Foldable and Straight-Major/Minor Vertices

Sector Angle/Fold Angle Relations

More Angles and Planes

Sector Elevation Angles

Sector Angles

Bend Angle

Edge Torsion Angle

Midfold Angles and Planes

In_nitesimal Trace

What Speci_es a Vertex?

Grids of Vertices

Hu_man Grid

Gauss Map

Miura-ori and Mars

Terms

3D Vectors

3D Analysis

3D Vectors

3D Vertices

Direction Vectors

Vertex from Crease Directions

Degree- Vertex from Sector Elevation Angles

Discrete Space Curve

Plate Model

Folding a Crease Pattern

Fold Angle Consistency

Solving for Fold Angles

Truss Model

3D Isometry and Planarity

Explicit Stress/Strain

3D Developability

Time E_ciency

Terms

Rotational Solids

Three-Dimensional Twists

Pu_y Twists

Folding a Sphere

Thin-Flange Algorithm

Solid-Flanged Structures

Mosely's \Bud"

Solid-Flange Algorithm

Speci_ed Gores

Generalized Flanges

Cylindrical Unfoldings

Unwrapping

Artists of Revolution

Variations on the Theme

Twist Lateral Shifts

Triangulated Gores

Terms

Afterword

Acknowledgements

저자소개

로버트 J. 랭 (지은이)    정보 더보기
TED 강연으로 다시 한번 실력과 인기가 검증된 세계적으로 인정받는 종이접기 작가다. 여섯 살 때부터 종이접기를 시작해, 50년 이상의 활동 기간 동안 700개 이상의 종이접기 도안을 고안했다. 물리학자이자 공학자 출신으로, 도체레이저, 광학, 광전자 관련 50개의 특허를 보유하고 있기도 하다. 그의 작품은 뛰어난 독창성과 세밀한 표현으로 예술의 경지에 이르렀다는 찬사와 함께, 역사상 가장 복잡하고 난이도가 높다는 평을 받는다. 수학과 공학을 접목시킨 작품 도안은 에어백부터 우주망원경까지 산업디자인과 관련한 공학 문제를 해결하는 데 응용되기도 한다. 1992년 서양인 최초로 일본종이접기협회 연례회의 연설자로 초청되었으며, 2011년에는 영국종이접기협회 미국인 명예회원으로 선정되었다. 미국, 프랑스, 일본 등에서 전시회를 갖기도 했고 20권 이상의 종이접기 책을 단독, 혹은 공동으로 집필하였다. 일본 종이접기 잡지 《오리가미 탄테이단》에 칼럼이 실리는 몇 안 되는 서양인 작가이며 다수의 종이접기 잡지에 칼럼을 기고하며 전문 작가로 활동하고 있다. www.langorigami.com
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책