logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Rough Set Theory and Granular Computing

Rough Set Theory and Granular Computing (Hardcover)

Masahiro Inuiguchi (지은이), Shoji Hirano (엮은이)
Springer Verlag
343,970원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
282,050원 -18% 0원
14,110원
267,940원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Rough Set Theory and Granular Computing
eBook 미리보기

책 정보

· 제목 : Rough Set Theory and Granular Computing (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9783540005742
· 쪽수 : 300쪽
· 출판일 : 2003-04-22

목차

Bayes' Theorem - the Rough Set Perspective.- 1 Introduction.- 2 Bayes' Theorem.- 3 Information Systems and Approximation of Sets.- 4 Decision Language.- 5 Decision Algorithms.- 6 Decision Rules in Information Systems.- 7 Properties of Decision Rules.- 8 Decision Tables and Flow Graphs.- 9 Illustrative Example.- 10 Conclusion.- References.- Approximation Spaces in Rough Neurocomputing.- 1 Introduction.- 2 Approximation Spaces in Rough Set Theory.- 3 Generalizations of Approximation Spaces.- 4 Information Granule Systems and Approximation Spaces.- 5 Classifiers as Information Granules.- 6 Approximation Spaces for Information Granules.- 7 Approximation Spaces in Rough-Neuro Computing.- 8 Conclusion.- References.- Soft Computing Pattern Recognition: Principles, Integrations and Data Mining.- 1 Introduction.- 2 Relevance of Fuzzy Set Theory in Pattern Recognition.- 3 Relevance of Neural Network Approaches.- 4 Genetic Algorithms for Pattern Recognition.- 5 Integration and Hybrid Systems.- 6 Evolutionary Rough Fuzzy MLP.- 7 Data mining and knowledge discovery.- References.- I. Generalizations and New Theories.- Generalization of Rough Sets Using Weak Fuzzy Similarity Relations.- 1 Introduction.- 2 Weak Fuzzy Similarity Relations.- 3 Generalized Rough Set Approximations.- 4 Generalized Rough Membership Functions.- 5 An Illustrative Example.- 6 Conclusions.- References.- Two Directions toward Generalization of Rough Sets.- 1 Introduction.- 2 The Original Rough Sets.- 3 Distinction among Positive, Negative and Boundary Elements.- 4 Approximations by Means of Elementary Sets.- 5 Concluding Remarks.- References.- Two Generalizations of Multisets.- 1 Introduction.- 2 Preliminaries.- 3 Infinite Memberships.- 4 Generalization of Membership Sequence.- 5 Conclusion.- References.- Interval Probability and Its Properties.- 1 Introduction.- 2 Interval Probability Functions.- 3 Combination and Conditional Rules for IPF.- 4 Numerical Example of Bayes' Formula.- 5 Concluding Remarks.- References.- On Fractal Dimension in Information Systems.- 1 Introduction.- 2 Fractal Dimensions.- 3 Rough Sets and Topologies on Rough Sets.- 4 Fractals in Information Systems.- References.- A Remark on Granular Reasoning and Filtration.- 1 Introduction.- 2 Kripke Semantics and Filtration.- 3 Relative Filtration with Approximation.- 4 Relative Filtration and Granular Reasoning.- 5 Concluding Remarks.- References.- Towards Discovery of Relevant Patterns from Parameterized Schemes of Information Granule Construction.- 1 Introduction.- 2 Approximation Granules.- 3 Rough-Fuzzy Granules.- 4 Granule Decomposition.- References.- Approximate Markov Boundaries and Bayesian Networks: Rough Set Approach.- 1 Introduction.- 2 Data Based Probabilistic Models.- 3 Approximate Probabilistic Models.- 4 Conclusions.- References.- II. Data Mining and Rough Sets.- Mining High Order Decision Rules.- 1 Introduction.- 2 Motivations.- 3 Mining High Order Decision Rules.- 4 Mining Ordering Rules: an Illustrative Example.- 5 Conclusion.- References.- Association Rules from a Point of View of Conditional Logic.- 1 Introduction.- 2 Preliminaries.- 3 Association Rules and Conditional Logic.- 4 Association Rules and Graded Conditional Logic.- 5 Concluding Remarks.- References.- Association Rules with Additional Semantics Modeled by Binary Relations.- 1 Introduction.- 2 Databases with Additional Semantics.- 3 Re-formulating Data Mining.- 4 Mining Semantically.- 5 Semantic Association Rules.- 6 Conclusion.- References.- A Knowledge-Oriented Clustering Method Based on Indiscernibility Degree of Objects.- 1 Introduction.- 2 Clustering Procedure.- 3 Experimental Results.- 4 Conclusions.- References.- Some Effective Procedures for Data Dependencies in Information Systems.- 1 Preliminary.- 2 Three Procedures for Dependencies.- 3 An Algorithm for Rule Extraction.- 4 Dependencies in Non-deterministic Information Systems.- 5 Concluding Remarks.- References.- Improving Rules Induced from Data Describing S

저자소개

Shoji Hirano (엮은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책