책 이미지
책 정보
· 분류 : 국내도서 > 대학교재/전문서적 > 자연과학계열 > 수학
· ISBN : 9788961056168
· 쪽수 : 366쪽
· 출판일 : 2013-01-01
목차
1 Preliminaries 9
1.1 Equivalence Relations 16
1.2 Mathematical Induction 22
1.3 Functions 27
2 Basic Group Theory 37
2.1 De nition and Examples 37
2.2 Basic Properties 41
3 Subgroups 49
3.1 Examples 49
3.2 Subgroup Tests 51
4 Normal Subgroups and Lagrange Theorem 61
5 Homomorphisms and Isomorphisms 71
6 Cyclic Groups 87
7 Permutation Groups 97
8 Automorphisms 115
9 Abelian Groups 125
10 Products 131
11 Sylow Theorems 137
12 Basic Ring Theory 153
13 More Rings 167
14 Polynomial Rings 179
15 Ideals and Factor Rings 189
16 Ring Homomorphisms 207
17 Factorizations of Polynomials 223
18 Euclidean Domains 241
19 Factorizations in an Integral Domain 251
20 Vector Spaces 259
20.1Vector Spaces 259
20.2 Subspaces 265
20.3 Basis of a Vector Space 270
21 Basic Field Theory 281
22 Field Extensions 291
23 Algebraic Extensions 307
24 Constructible Geometric Constructions 321
25 Separable and Inseparable Extensions 327
26 Galois Theory 333
27 Appendix: Matrices and Their Determinants 349
27.1 Matrices 349
27.2 Determinants 354
Bibliography 359




















