logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Transformation Groups Applied to Mathematical Physics

Transformation Groups Applied to Mathematical Physics (Hardcover, 1985)

N. H. Ibragimov (지은이)
D Reidel Pub Co
216,220원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
177,300원 -18% 0원
8,870원
168,430원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Transformation Groups Applied to Mathematical Physics
eBook 미리보기

책 정보

· 제목 : Transformation Groups Applied to Mathematical Physics (Hardcover, 1985) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 변환
· ISBN : 9789027718471
· 쪽수 : 394쪽
· 출판일 : 1984-12-31

목차

I: Point Transformations.- Introductory Chapter: Group and Differential Equations.- 1. Continuous groups.- 1.1 Topological groups.- 1.2 Lie groups.- 1.3 Local groups.- 1.4 Local Lie groups.- 2. Lie algebras.- 2.1 Definitions.- 2.2 Lie algebras and local Lie groups.- 2.3 Inner automorphisms.- 2.4 The Levi-Mal'cev theorem.- 3. Transformation groups.- 3.1 Local transformation groups.- 3.2 Lie's equation.- 3.3 Invariants.- 3.4 Invariant manifolds.- 4. Invariant differential equations.- 4.1 Prolongation of point transformations.- 4.2 The defining equation.- 4.3 Invariant and partially invariant solutions.- 4.4 The method of invariant majorants.- 5. Examples.- 5.1 Let x ? ?n, a ? ?.- 5.2 Let us illustrate the algorithm for computing the group admitted by a differential equation by means of the example of a second-order equation.- 5.3 The Korteweg-de Vries equation.- 5.4 Consider the equation of motion of a polytropic gas.- 1: Motions in Riemannian Spaces.- 6. The general group of motions.- 6.1 Local Riemannian manifolds.- 6.2 Arbitrary motions in Vn.- 6.3 The defect of a group of motions in Vn.- 6.4 Invariant family of spaces.- 7. Examples of motions.- 7.1 Isometries.- 7.2 Conformal motions.- 7.3 Motions with ? = 2.- 7.4 Nonconformal motions with ? = 1.- 7.5 Motions with given invariants.- 8. Riemannian spaces with nontrivial conformal group.- 8.1 Conformally related spaces.- 8.2 Spaces of constant curvature.- 8.3 Conformally-flat spaces.- 8.4 Spaces with definite metric.- 8.5 Lorentzian spaces.- 9. Group analysis of Einstein's equations.- 9.1 Harmonic coordinates.- 9.2 The group admitted by Einstein's equations.- 9.3 The Lie-Vessiot decomposition.- 9.4 Exact solutions.- 10. Conformally-invariant equations of second order.- 10.1 Preliminaries.- 10.2 Linear equations in Sn.- 10.3 Semilinear equations in Sn.- 10.4 Equations admitting an isometry group of maximal order.- 10.5 The wave equation in Lorentzian spaces.- 2: A Group-Theoretical Approach to the Huygens Principle.- 11. General considerations and some history of the problem.- 11.1 Hadamard's problem.- 11.2 Hadamard's criterion.- 11.3 The Mathisson-Asgeirsson Theorem.- 11.4 The necessary conditions of Gunther and McLenaghan.- 11.5 The Lagnese-Stellmacher transformation.- 11.6 The present state of the art and generalizations of Hadamard's problem.- 12. The wave equation in V4.- 12.1 Computation of the geodesic distance in a plane-wave metric.- 12.2 Conformal invariance and the Huygens principle.- 12.3 The solution of the Cauchy problem.- 12.4 The case of a trivial conformal group.- 13. The Huygens principle in Vn+1.- 13.1 Preliminary analysis of the solution.- 13.2 The Fourier transform of the Bessel function J0(a ? ).- 13.3 The descent method. Representation of solution for arbitrary n.- 13.4 Summary of the Huygens principle.- 13.5 Failure of the connection between Huygens' principle and conformal invariance.- II: Tangent Transformations.- 3: Introduction to the Theory of Lie-Backlund Groups.- 14. Heuristic considerations.- 14.1 Contact transformations.- 14.2 Finite-order tangent transformations.- 14.3 Bianchi-Lie transformation.- 14.4 Backlund transformations. Examples.- 14.5 The concept of infinite-order tangent transformation.- 15. Formal groups.- 15.1 Lie's equation for formal one-parameter groups.- 15.2 Invariants and invariant manifolds.- 16. One-parameter groups of Lie-Backlund transformations.- 16.1 Definition and the infinitesimal criterion.- 16.2 Lie-Backlund operators. Canonical operators.- 16.3 Examples.- 17. Invariant differential manifolds.- 17.1 A criterion of invariance.- 17.2 Examples of solutions of the defining equation.- 17.3 Ordinary differential equations.- 17.4 The isomorphism theorem.- 17.5 Linearization by means of Lie-Backlund transformations.- 4: Equations with Infinite Lie-Backlund Groups.- 18. Typical examples.- 18.1 The heat equation.- 18.2 The Korteweg-de Vries equation.- 18.3 A fifth-order equation.- 18.4 The wave equation

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책