logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Introduction to Group Theory

Introduction to Group Theory (Paperback)

Hans Schwerdtfeger (엮은이)
Springer Verlag
99,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
81,980원 -18% 0원
4,100원
77,880원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Introduction to Group Theory
eBook 미리보기

책 정보

· 제목 : Introduction to Group Theory (Paperback) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 군론
· ISBN : 9789028604957
· 쪽수 : 238쪽
· 출판일 : 1976-07-08

목차

'I Definition of a Group and Examples.- 1 The abstract group and the notion of group isomorphism.- a. Sets and mappings.- b. Algebraic systems.- c. Semigroups.- d. Groups.- e. Isomorphism.- f. Cyclic groups 7.- Examples and exercises.- 2 Groups of mappings. Permutations. Cayley's theorem.- a. Composition of mappings.- b. Permutations.- c. Cycles.- d. Transpositions.- e. Subgroups.- f. Cayley's theorem. The group table.- Examples and exercises.- 3 Arithmetical groups.- a. Facts of number theory.- b. Residue classes modulo m. Euler's function.- c. The unit group of a ring.- d. Matrix residue class groups (mod m).- e. The case m = 2.- Examples and exercises.- 4 Geometrical Groups.- a. Rotations and reflexions.- b. The dihedral groups.- c. Rotations and reflexions in space.- d. The polyhedral groups.- e. The groups of the octahedron and of the tetrahedron.- Examples and exercises.- II Subsets, Subgroups, Homomorphisms.- 1 The algebra of subsets in a group.- a.-c. Product and inverse of subsets.- d. Subgroup generated by a subset.- e. Two disjoint subsets covering a group.- Examples and exercises: Frattini subgroup.- 2 A subgroup and its cosets. Lagrange's theorem.- a. Cosets. Lagrange's theorem.- b. Index theorems.- c. Poincare's theorem.- d. Finite cyclic groups.- Examples and exercises: Multiplicative group of a finite field. The icosahedral group. Frattini subgroup. Abelian groups.- 3 Homomorphisms, normal subgroups and factor groups.- a. Homomorphism, epimorphism, monomorphism.- b. Kernel.- c. Natural homomorphism and factor group.- d. Canonical product.- Examples and exercises.- 4 Transformation. Conjugate elements. Invariant subsets.- a. Conjugacy.- b. Invariance..- c. The classes.- d. The normalizer.- e. Generalization of Cayley's theorem.- Examples and exercises: Transformation in permutation groups. Geometry in a group.- 5 Correspondence theorems. Direct products.- a.-b. Theorems.- c. The internal direct product.- d. Generalization to more than two factors.- e. The external direct product.- f. The restricted direct product.- Examples and exercises.- 6 Double cosets and double transversals.- a. A counting formula.- b. Double cosets.- c. Double transversals.- d. A group of double cosets.- Examples and exercises.- III Automorphisms and Endomorphisms.- 1 Groups of automorphisms. Characteristic subgroups.- a. Generalities.- b. Inner automorphisms.- c. Characteristic subgroups.- d. Characteristically simple groups.- e. ?-invariance.- Examples and exercises: Automorphism groups of some special groups. Simplicity of the alternating groups. The kernel or nucleus of a group. The Frattini subgroup, a characteristic subgroup.- 2 The holomorph of a finite group. Complete groups.- a. Definition of the holomorph.- b.-c. The holomorph as a permutation group.- d. Is the holomorph minimal?.- e. Complete groups.- Examples and exercises: Completeness of the symmetric groups. Equicentralizer systems in groups.- 3 Group extensions.- a. The semi-direct product.- b. The external semi-direct product.- c. Are there other solutions to the extension problem ?.- d.-e. Construction of a normal extension.- Examples and exercises: Complement. Splitting extension.- 4 A problem of Burnside: Groups with outer automorphisms leaving the classes invariant.- a. Preliminaries on the groups L2n.- b. The groups L4n and L8n.- c. Automorphism associated with a subgroup of index 2.- d. Proof of the theorem concerning L8n.- Examples and exercises.- 5 Endomorphisms and operators.- a. Endomorphisms.- b. The endomorphism ring of an abelian group.- c. Operator domain of a group. Fully invariant subgroups.- Examples and exercises.- IV Finite Series of Subgroups.- 1 The fundamental concepts of lattice theory.- a. Partially ordered sets.- b. Lattices.- c. Partially ordered set and lattice.- d. Modular lattices and distributive lattices.- Examples and exercises.- 2 Lattices of

저자소개

Hans Schwerdtfeger (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책