logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Linear Algebra

Linear Algebra

Woo Sung Sik (지은이)
교우사(교재)
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
30,000원 -0% 0원
900원
29,100원 >
30,000원 -0% 0원
0원
30,000원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 3개 19,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Linear Algebra
eBook 미리보기

책 정보

· 제목 : Linear Algebra 
· 분류 : 국내도서 > 대학교재/전문서적 > 자연과학계열 > 수학
· ISBN : 9791125102625
· 쪽수 : 465쪽
· 출판일 : 2018-11-20

목차

1 Linear Equations and Subspaces 1
1.1 Solving Linear Equations by Gauss Elimination . . . . . . . . . . . . . . . . . 1
1.1.1 Solving Explicit Equations . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Linear Equations in n Variables . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Vector Equations and Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Vector Space Rn and Subspaces . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Vector Equation and Matrix Equation . . . . . . . . . . . . . . . . . . 18
1.2.3 Spanning Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.4 Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Bases of Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 Spanning vectors for Subspaces . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 General Solutions of Linear Equations . . . . . . . . . . . . . . . . . . 31
1.3.3 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.4 Bases of Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Matrices and Linear Maps on Rn 47
2.1 Matrices and Linear Maps on Rn . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.1 Operations of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Matrices and Linear Maps on Rn . . . . . . . . . . . . . . . . . . . . . 49
2.2 Matrix Representation of Linear Maps . . . . . . . . . . . . . . . . . . . . . . 54
2.2.1 Standard Matrix of Linear Map . . . . . . . . . . . . . . . . . . . . . . 54
2.2.2 Matrix Multiplication and Composition of Linear Maps . . . . . . . . 57
2.3 Rank and Nullity of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4 Left and Right Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 Invertible Matrices and Elementary Matrices . . . . . . . . . . . . . . . . . . 75
2.5.1 Invertible Matrices and Corresponding Linear Maps . . . . . . . . . . 75
2.5.2 Elementary Matrices and Matrix Inverse . . . . . . . . . . . . . . . . . 78
2.5.3 Characterization of Invertible Matrices . . . . . . . . . . . . . . . . . . 80

3 Determinant 83
3.1 Determinant of Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Determinant of Order n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Properties of Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Basic Properties of Determinant . . . . . . . . . . . . . . . . . . . . . 92
3.3.3 Characterizing Properties of Determinant . . . . . . . . . . . . . . . . 96
3.3.4 Explicit Formula for Determinant . . . . . . . . . . . . . . . . . . . . . 97
3.4 Applications of Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.4.1 Determinant of Submatrix and Rank . . . . . . . . . . . . . . . . . . . 102
3.4.2 Cramer's Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.3 A??1 by Adjoint Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.4 Lagrange Interpolation and Vandermonde Matrix . . . . . . . . . . . . 108
3.4.5 Companion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Bases and Linear Maps on Subspaces 117
4.1 Bases of Subspaces of Rn and Dimension . . . . . . . . . . . . . . . . . . . . . 117
4.2 Linear Maps between Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.1 Linear Maps and Matrix Representation . . . . . . . . . . . . . . . . . 123
4.2.2 Null Space, Range Space . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3 Matrix Representation under Change of Bases . . . . . . . . . . . . . . . . . . 139

5 Diagonalization and Geometry of Rn 147
5.1 Eigenvectors and Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1.1 Eigenvectors and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 147
5.1.2 Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.3 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Inner Product, Length and Orthogonality . . . . . . . . . . . . . . . . . . . . 158
5.2.1 Inner Product and Orthogonality . . . . . . . . . . . . . . . . . . . . . 158
5.2.2 Orthogonal Projections and Gram-Schmidt Process . . . . . . . . . . . 163
5.2.3 Cauchy Schwartz Inequality and Triangle Inequality . . . . . . . . . . 169
5.2.4 Least Square Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Vector Spaces and Linear Maps 177
6.1 Denition of Vector Space and Basic Properties . . . . . . . . . . . . . . . . . 177
6.1.1 Comments on Scalar Fields . . . . . . . . . . . . . . . . . . . . . . . . 177
6.1.2 Denitions and Examples of Vector Spaces . . . . . . . . . . . . . . . 178
6.1.3 Basic Properties of Vector Spaces . . . . . . . . . . . . . . . . . . . . . 182
6.1.4 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2 Bases and Direct Sum of Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2.1 Spanning Set and Linear Independence . . . . . . . . . . . . . . . . . 187
6.2.2 Bases and Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.2.3 Direct Sum of Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.3 Linear Maps on Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.1 Linear Maps on Vector Spaces . . . . . . . . . . . . . . . . . . . . . . 202
6.3.2 Rank and Nullity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.4 Matrices and Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.4.1 Linear Maps and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.4.2 Change of Coordinate Matrix. . . . . . . . . . . . . . . . . . . . . . . 226
6.5 Linear Functionals and Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . 232
6.5.1 Dual Spaces and Dual Basis . . . . . . . . . . . . . . . . . . . . . . . . 232
6.5.2 Linear Maps on Dual Spaces and Double Dual . . . . . . . . . . . . . 235
6.6 Tensor Product and Exterior Product . . . . . . . . . . . . . . . . . . . . . . 245
6.6.1 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.6.2 Exterior Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.7 Diagonalization of Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.8 Invariant Subspaces and Cayley-Hamilton Theorem. . . . . . . . . . . . . . . 272

7 Canonical Forms 281
7.1 Polynomials and Minimal Polynomial . . . . . . . . . . . . . . . . . . . . . . 282
7.1.1 Ring of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.1.2 Minimal Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.2 Decomposition into Cyclic Subspaces . . . . . . . . . . . . . . . . . . . . . . . 294
7.2.1 Minimal Polynomial and Cyclic Subspaces . . . . . . . . . . . . . . . . 295
7.2.2 Decomposing into Null Spaces N(g) . . . . . . . . . . . . . . . . . . . 298
7.2.3 Decomposing into Cyclic Subspaces . . . . . . . . . . . . . . . . . . . 305
7.3 Jordan Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
7.3.1 Jordan Basis and Jordan Canonical Form . . . . . . . . . . . . . . . . 319
7.3.2 Explicit Computation of Jordan Basis . . . . . . . . . . . . . . . . . . 327
7.3.3 Applications of Jordan Canonical Form . . . . . . . . . . . . . . . . . 333
7.4 Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.4.1 Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.4.2 Explicit Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

8 Inner Products and Bilinear Forms 351
8.1 Inner Products and Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1.1 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
8.1.2 Orthogonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
8.1.3 Orthogonal Projections and Gram Schmidt Process . . . . . . . . . . . 358
8.1.4 Cauchy-Schwartz Inequality and Triangle Inequality . . . . . . . . . . 363
8.2 Adjoint of Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
8.2.1 Linear Functionals and Inner Product . . . . . . . . . . . . . . . . . . 372
8.2.2 Adjoint of Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 374
8.2.3 Adjoint and Dual of Linear Map. . . . . . . . . . . . . . . . . . . . . 379
8.3 Normal Operators and Spectral Theorem . . . . . . . . . . . . . . . . . . . . 383
8.3.1 Basic Properties of Normal Operators . . . . . . . . . . . . . . . . . . 383
8.3.2 Diagonalization of Normal Operators . . . . . . . . . . . . . . . . . . . 386
8.3.3 Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
8.3.4 Canonical Form for Normal Operator . . . . . . . . . . . . . . . . . . 393
8.4 Self Adjoint and Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . 398
8.4.1 Self Adjoint and Positive Operators . . . . . . . . . . . . . . . . . . . 398
8.4.2 Unitary and Orthogonal Operators . . . . . . . . . . . . . . . . . . . . 403
8.4.3 Singular and Polar Decomposition . . . . . . . . . . . . . . . . . . . . 407
8.5 Bilinear Forms and Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . 414
8.5.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
8.5.2 Symmetric Bilinear Forms and Quadratic Forms . . . . . . . . . . . . 418
8.5.3 Sesqui-Linear Forms and Inner Products . . . . . . . . . . . . . . . . . 423

Appendixes 429

A Sets 429
A.1 Sets and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
A.2 Equivalence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Numbers 433

B.1 Integers Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
B.2 Fields and Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.3 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

C Polynomials 439
C.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
C.2 Real and Complex Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 441

D Existence of Basis and its Cardinality 443
D.1 Maximal Principle and Cardinal Numbers . . . . . . . . . . . . . . . . . . . . 443
D.2 Existence and Equipotence of Bases of Vector Spaces . . . . . . . . . . . . . . 445
D.3 Cardinality of Basis of Dual Space . . . . . . . . . . . . . . . . . . . . . . . . 446

Index 448
Bibliography 453

저자소개

Woo Sung Sik (지은이)    정보 더보기
Department of Mathematics Ewha Women’s University
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책