책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 웹 서비스/웹 프로그래밍
· ISBN : 9791158390822
· 쪽수 : 332쪽
· 출판일 : 2017-11-23
책 소개
목차
▣ 01장: 수학 지식 준비
1.1 편미분
__1.1.1 도함수와 편도함수
__1.1.2 미분 계수와 편미분 계수
__1.1.3 편미분의 기본 공식
__1.1.4 합성함수의 편미분
__1.1.5 레벨 업 전미분
1.2 선형대수
__1.2.1 벡터
__1.2.2 행렬
1.3 정리
▣ 02장: 파이썬 준비
2.1 파이썬 2와 파이썬 3
2.2 아나콘다 배포판
2.3 파이썬 기초
__2.3.1 파이썬 프로그램 실행
__2.3.2 데이터형
__2.3.3 변수
__2.3.4 데이터 구조
__2.3.5 연산
__2.3.6 기본 구문
__2.3.7 함수
__2.3.8 클래스
__2.3.9 라이브러리
2.4 NumPy
__2.4.1 NumPy 배열
__2.4.2 NumPy로 벡터, 행렬 계산
__2.4.3 배열과 다차원 배열 생성
__2.4.4 슬라이스
__2.4.5 브로드캐스트
2.5 딥러닝을 위한 라이브러리
__2.5.1 TensorFlow
__2.5.2 케라스(Keras)
__2.5.3 씨아노(Theano)
2.6 정리
▣ 03장: 신경망
3.1 신경망이란?
__3.1.1 뇌와 신경망
__3.1.2 딥러닝과 신경망
3.2 신경망이라는 회로
__3.2.1 단순한 모델화
__3.2.2 논리회로
3.3 단순 퍼셉트론
__3.3.1 모델화
__3.3.2 구현
3.4 로지스틱 회귀
__3.4.1 계단함수와 시그모이드 함수
__3.4.2 모델화
__3.4.3 구현
__3.4.4 (레벨업) 시그모이드 함수와 확률밀도함수, 누적분포함수
__3.4.5 (레벨업) 경사하강법과 국소최적해
3.5 다중 클래스 로지스틱 회귀
__3.5.1 소프트맥스 함수
__3.5.2 모델화
__3.5.3 구현
3.6 다층 퍼셉트론
__3.6.1 비선형 분류
__3.6.2 모델화
__3.6.3 구현
3.7 모델 평가
__3.7.1 분류에서 예측으로
__3.3.2 예측을 평가
__3.7.3 간단한 실험
3.8 정리
▣ 04장: 심층 신경망
4.1 딥러닝 준비
4.2 학습시킬 때 발생하는 문제점
__4.2.1 경사 소실 문제
__4.2.2 오버피팅 문제
4.3 효율적인 학습을 위해
__4.3.1 활성화 함수
__4.3.2 드롭아웃
4.4 구현 설계
__4.4.1 기본 설계
__4.4.2 학습을 가시화한다
4.5 고급 기술
__4.5.1 데이터를 정규화하고 웨이트를 초기화한다
__4.5.2 학습률 설정
__4.5.3 얼리 스탑핑(조기 종료)
__4.5.4 배치 정규화
4.6 정리
▣ 05장: 순환 신경망
5.1 기본 사항
__5.1.1 시계열 데이터
__5.1.2 과거의 은닉층
__5.1.3 Backpropagation Through Time
__5.1.4 구현
5.2 LSTM
__5.2.1 LSTM 블록
__5.2.2 CEC·입력 게이트·출력 게이트
__5.2.3 망각 게이트
__5.2.4 핍홀 결합
__5.2.5 모델화
__5.2.6 구현
__5.2.7 장기 의존성 학습 평가 - Adding Problem
5.3 GRU
__5.3.1 모델화
__5.3.2 구현
5.4 정리
▣ 06장: 순환 신경망 응용
6.1 Bidirectional RNN
__6.1.1 미래의 은닉층
__6.1.2 전방향·후방향 전파
__6.1.3 MNIST를 사용한 예측
6.2 RNN Encoder-Decoder
__6.2.1 Sequence-to-Sequence 모델
__6.2.2 간단한 Q&A 문제
6.3 Attention
__6.3.1 시간의 웨이트
__6.3.2 LSTM에서의 Attention
6.4 Memory Networks
__6.4.1 기억의 외부화
__6.4.2 Q&A 문제에 적용
__6.4.3 구현
6.5 정리
▣ 부록
A.1 모델을 저장하고 읽어 들인다
__A.1.1 텐서플로에서의 처리
__A.1.2 케라스에서의 처리
A.2 텐서보드(TensorBoard)
A.3 tf.contrib.learn