책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 언어 > 파이썬
· ISBN : 9791160503371
· 쪽수 : 280쪽
· 출판일 : 2017-11-30
책 소개
목차
1장 베이지안 추론의 철학
__1.1 서론
____1.1.1 베이지안 심리 상태
____1.1.2 실제 베이지안 추론
____1.1.3 빈도주의자의 방법이 틀렸나?
____1.1.4 빅데이터에 대한 논의
__1.2 베이지안 프레임워크
____1.2.1 예제: 피해갈 수 없는 동전 던지기
____1.2.2 예제: 사서일까, 농부일까?
__1.3 확률분포
____1.3.1 이산적인 경우
____1.3.2 연속적인 경우
____1.3.3 그럼 λ란 무엇인가?
__1.4 컴퓨터를 사용하여 베이지안 추론하기
____1.4.1 예제: 문자 메시지 데이터에서 행동 추론하기
____1.4.2 우리의 첫 번째 망치를 소개한다: PyMC
____1.4.3 해석
____1.4.4 사후확률분포에서 얻은 표본에는 어떤 좋은 점이 있는가?
__1.5 결론
__1.6 부록
____1.6.1 두 λ가 정말 다른지 통계적으로 알 수 있나?
____1.6.2 변환점 두 개로 확장하기
__1.7 연습문제
____1.7.1 해답
__1.8 참고자료
2장 PyMC 더 알아보기
__2.1 서론
____2.1.1 부모와 자식 관계
____2.1.2 PyMC 변수
____2.1.3 모델에 관측 포함하기
____2.1.4 마지막으로
__2.2 모델링 방법
____2.2.1 같은 스토리, 다른 결말
____2.2.2 예제: 베이지안 A/B 테스트
____2.2.3 간단한 예제
____2.2.4 A와 B를 묶어 보기
____2.2.5 예제: 거짓말에 대한 알고리즘
____2.2.6 이항분포
____2.2.7 예제: 학생들의 부정행위
____2.2.8 PyMC 대안 모델
____2.2.9 더 많은 PyMC 기법들
____2.2.10 예제: 우주 왕복선 챌린저호 참사
____2.2.11 정규분포
____2.2.12 챌린저호 참사 당일에는 무슨 일이 일어났는가?
__2.3 우리의 모델이 적절한가?
____2.3.1 분리도표
__2.4 결론
__2.5 부록
__2.6 연습문제
____2.6.1 해답
__2.7 참고자료
3장 MCMC 블랙박스 열기
__3.1 베이지안 지형
____3.1.1 MCMC를 사용하여 지형 탐색하기
____3.1.2 MCMC 수행 알고리즘
____3.1.3 사후확률분포에 대한 다른 접근법
____3.1.4 예제: 혼합모델을 사용한 비지도 클러스터링
____3.1.5 사후확률분포의 표본을 섞지 마라
____3.1.6 MAP을 사용하여 수렴 개선하기
__3.2 수렴 판정하기
____3.2.1 자기상관
____3.2.2 솎아내기
____3.2.3 pymc.Matplot.plot()
__3.3 MCMC에 대한 유용한 팁
____3.3.1 지능적인 시작값
____3.3.2 사전분포
____3.3.3 통계적 계산에 대한 구전 정리
__3.4 결론
__3.5 참고자료
4장 아무도 알려주지 않는 위대한 이론
__4.1 서론
__4.2 큰 수의 법칙
____4.2.1 직관
____4.2.2 예제: 푸아송 확률변수의 수렴
____4.2.3 Var(Z)를 어떻게 계산할까?
____4.2.4 기댓값과 확률
____4.2.5 이 모든 것이 베이지안 통계와 무슨 상관이 있을까?
__4.3 작은 수의 혼란
____4.3.1 예제: 통합된 지리 데이터
____4.3.2 예제: 캐글의 미국 인구조사 우편물 회신율 챌린지
____4.3.3 예제: 레딧 코멘트 정렬하기/추려내기
____4.3.4 추리기
____4.3.5 그러나 이 방법은 실시간에서는 너무 느리다
____4.3.6 별등급 시스템 확장
__4.4 결론
__4.5 부록
____4.5.1 코멘트를 추리는 수식 유도
__4.6 연습문제
____4.6.1 해답
__4.7 참고자료
5장 오히려 큰 손해를 보시겠습니까?
__5.1 서론
__5.2 손실함수
____5.2.1 현실 세계에서의 손실함수
____5.2.2 예제: ‘The Price Is Right’ 쇼케이스 최적화
__5.3 베이지안 방법을 통한 기계학습
____5.3.1 예제: 금융예측
____5.3.2 예제: 캐글의 Observing Dark Worlds 콘테스트
____5.3.3 데이터
____5.3.4 사전확률
____5.3.5 훈련과 PyMC 구현
__5.4 결론
__5.5 참고자료
6장 우선순위 바로잡기
__6.1 서론
__6.2 주관적인 사전확률분포 vs. 객관적인 사전확률분포
____6.2.1 객관적인 사전확률분포
____6.2.2 주관적인 사전확률분포
____6.2.3 결정, 결정…
____6.2.4 경험적 베이즈
__6.3 알아두면 유용한 사전확률분포
____6.3.1 감마분포
____6.3.2 위샤트분포
____6.3.3 베타분포
__6.4 예제: 베이지안 MAB(Multi-Armed Bandits)
____6.4.1 응용
____6.4.2 솔루션 제안
____6.4.3 적합의 척도
____6.4.4 알고리즘 확장하기
__6.5 해당 분야 전문가로부터 사전확률분포 유도하기
____6.5.1 트라이얼 룰렛법
____6.5.2 예제: 주식수익률
____6.5.3 위샤트분포를 위한 팁
__6.6 켤레 사전확률분포
__6.7 제프리 사전확률분포
__6.8 N이 증가할 때 사전확률분포의 효과
__6.9 결론
__6.10 부록
____6.10.1 벌점화 회귀부모형에 대한 베이지안의 관점
____6.10.2 퇴화 사전확률분포 고르기
__6.11 참고자료
7장 베이지안 A/B 테스트
__7.1 서론
__7.2 전환율 테스트 개요
__7.3 선형손실함수 추가하기
____7.3.1 기대수익분석
____7.3.2 A/B 실험 확장하기
__7.4 전환율을 넘어서: t-검정
____7.4.1 t-검정 설정
__7.5 증분 추정하기
____7.5.1 점추정량 만들기
__7.6 결론
__7.7 참고자료
부록 A
__A.1 파이썬, PyMC
____A.1.1 아나콘다 설치하기
____A.1.2 실습 전 라이브러리 설치하기
__A.2 주피터 노트북
____A.2.1 예제 소스 다운로드
____A.2.2 주피터 노트북 실행
__A.3 Reddit 실습하기
____A.3.1 praw 설치하기
____A.3.2 Reddit 가입하기
용어집
찾아보기