logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

R을 활용한 머신러닝 3/e

R을 활용한 머신러닝 3/e

(R로 머신러닝 알고리즘 작성, 데이터 준비, 데이터 예측 기법)

브레트 란츠 (지은이), 윤성진, (주)크라스랩 (옮긴이)
에이콘출판
36,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

R을 활용한 머신러닝 3/e
eBook 미리보기

책 정보

· 제목 : R을 활용한 머신러닝 3/e (R로 머신러닝 알고리즘 작성, 데이터 준비, 데이터 예측 기법)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 데이터베이스 프로그래밍 > 데이터베이스 구축
· ISBN : 9791161753928
· 쪽수 : 596쪽
· 출판일 : 2020-02-27

책 소개

몇 줄의 R 코드로 머신러닝이 어떻게 작동되는지 눈으로 직접 확인할 수 있고 최신 기법까지 내 손으로 직접 짜 볼 수 있는 짜릿한 경험과 자신감을 제공한다. 3판에서는 정돈된 데이터를 만드는 방법을 새롭게 설명하고 최신 버전의 예제를 제공한다.

목차

1장. 머신러닝 소개
__머신러닝의 기원
__머신러닝의 사용과 남용
____머신러닝 성공 사례
____머신러닝의 한계
____머신러닝의 윤리
__기계의 학습 방법
____데이터 저장소
____추상화
____일반화
____평가
__실전 머신러닝
____입력 데이터 형식
____머신러닝 알고리즘 형식
____입력 데이터와 알고리즘 매칭
__R을 이용한 머신러닝
____R 패키지 설치
____패키지 로딩과 언로딩
____RStudio 설치
__요약


2장. 데이터의 관리와 이해
__R 데이터 구조
____벡터
____팩터
____리스트
____데이터 프레임
____행렬과 배열
__R을 이용한 데이터 관리
____데이터 구조 저장, 로드, 제거
____CSV 파일에서 데이터 임포트와 저장
__데이터 탐색과 이해
____데이터 구조 탐색
____수치 변수 탐색
____범주 변수 탐색
____변수 간의 관계 탐색
__요약


3장. 게으른 학습: 최근접 이웃을 사용한 분류
__최근접 이웃 분류의 이해
____k-NN 알고리즘
____k-NN 알고리즘이 게으른 이유
__예제: k-NN 알고리즘으로 유방암 진단
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


4장. 확률적 학습: 나이브 베이즈 분류
__나이브 베이즈의 이해
____베이지안 기법의 기본 개념
____나이브 베이즈 알고리즘
__예제: 나이브 베이즈 알고리즘을 이용한 휴대폰 스팸 필터링
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


5장. 분할 정복: 의사 결정 트리와 규칙 기반의 분류
__의사 결정 트리의 이해
____분할 정복
____C5.0 의사 결정 트리 알고리즘
__예제: C5.0 의사 결정 트리를 이용한 위험 은행 대출 식별
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__분류 규칙 이해
____분리 정복
____1R 알고리즘
____리퍼 알고리즘
____의사 결정 트리에서 규칙 구성
____무엇이 트리와 규칙을 탐욕스럽게 만드는가?
__예제: 규칙 학습자를 이용한 독버섯 식별
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


6장. 수치 데이터 예측: 회귀 방법
__회귀의 이해
____단순 선형 회귀
____보통 최소 제곱 추정
____상관관계
____다중 선형 회귀
__예제: 선형 회귀를 이용한 의료비 예측
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__회귀 트리와 모델 트리의 이해
____트리에 회귀 추가
__예제: 회귀 트리와 모델 트리로 와인 품질 평가
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


7장. 블랙박스 방법: 신경망과 서포트 벡터 머신
__신경망의 이해
____생물학적 뉴런에서 인공 뉴런으로
____활성 함수
____네트워크 토폴로지
____역전파로 신경망 훈련
__예제: ANN으로 콘크리트 강도 모델링
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__서포트 벡터 머신의 이해
____초평면을 이용한 분류
____비선형 공간을 위한 커널의 사용
__예제: SVM으로 OCR 수행
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 향상
__요약


8장. 패턴 찾기: 연관 규칙을 이용한 장바구니 분석
__연관 규칙의 이해
____연관 규칙 학습을 위한 아프리오리 알고리즘
____규칙 흥미 측정: 지지도와 신뢰도
____아프리오리 원칙을 이용한 규칙 집합의 구축
__예제: 연관 규칙으로 자주 구매되는 식료품 식별
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


9장. 데이터 그룹 찾기: k-평균 군집화
__군집화의 이해
____머신러닝 작업으로서 군집화
____k-평균 군집화 알고리즘
__k-평균 군집화를 이용한 십대 시장 세분화 발굴
____1단계: 데이터 수집
____2단계: 데이터 탐색과 준비
____3단계: 데이터로 모델 훈련
____4단계: 모델 성능 평가
____5단계: 모델 성능 개선
__요약


10장. 모델 성능 평가
__분류 성능 측정
____분류기의 예측 이해
____혼동 행렬 자세히 보기
____혼동 행렬을 사용한 성능 측정
____정확도를 넘어: 다른 성능 척도
____ROC 곡선으로 성능 트레이드오프 시각화
__미래의 성능 예측
____홀드아웃 방법
__요약


11장. 모델 성능 개선
__성능 개선을 위한 신용 모델 튜닝
____자동 파라미터 튜닝을 위한 caret 사용
__메타학습으로 모델 성능 개선
____앙상블의 이해
____배깅
____부스팅
____랜덤 포레스트
__요약


12장. 특화된 머신러닝 주제
__실세계 데이터 관리와 준비
____tidyverse 패키지를 이용한 정돈된 데이터 만들기
____외부 파일에서 읽고 쓰기
____SQL 데이터베이스의 데이터 쿼리
__온라인 데이터와 서비스 작업
____웹 페이지의 전체 텍스트 다운로드
____웹 페이지에서 데이터 파싱
__도메인에 특화된 데이터 작업
____생체 정보학 데이터 분석
____네트워크 데이터 분석과 시각화
__R 성능 개선
____대용량 데이터셋 관리
____병렬 컴퓨팅으로 더 빠른 학습
____최적 학습 알고리즘 도입
____GPU 컴퓨팅

저자소개

브레트 란츠 (지은이)    정보 더보기
혁신적인 데이터 방법을 사용해 인간 행동을 이해하는 데 15년 이상을 보냈다. 사회학자 출신으로 처음에는 대학생들의 소셜 네트워크 프로필의 대규모 데이터베이스를 연구하는 동안 머신러닝에 매료됐다. DataCamp 강사로, 전 세계에서 머신러닝 워크숍에 참여했다. 스포츠, 비디오 게임, 자율주행차량, 외국어 학습 등 다양한 주제에 대한 데이터 과학 애플리케이션에 열중하며 이와 관련해 dataspelunking.com에서 블로그를 작성하기를 원하고 있다.
펼치기
윤성진 (지은이)    정보 더보기
KAIST 전산학과에서 컴퓨터 그래픽스를 전공했으며 LG전자 전자기술원, 티맥스소프트, 액센츄어 등에서 소프트웨어 연구 개발, 미들웨어 및 모듈형 로봇 플랫폼 제품 기획 업무를 수행했다. 인공지능 전문가로서 한국외국어대학교에서 딥러닝, 자료 구조, 데이터 마이닝 등을 가르쳤다. 인공지능연구원에서 연구소장으로서 AI 솔루션 연구 개발을 총괄하면서 서울과학종합대학원대학교 AI첨단대학원 겸직 교수를 역임하고 있다.
펼치기
(주)크라스랩 (옮긴이)    정보 더보기
(주)크라스랩은 머신러닝을 기반으로 다양한 연구를 수행하고 있으며, 특히 머신러닝 기반의 금융분석과 핀테크에 중점을 두고 있다. KAIST 전산학과 계산이론 연구실 출신의 이병욱 대표가 이끌고 있으며, 그의 저서 『블록체인 해설서』(에이콘, 2019)는 대한민국학술원에 의해 2019년도 교육부 우수학술도서로 선정됐다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책