logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

문과생을 위한 인공지능 입문

문과생을 위한 인공지능 입문

(수학, 통계 지식 없이 배우는)

김장현, 김민철 (지은이)
에이콘출판
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,500원 -10% 0원
1,750원
29,750원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 11개 29,100원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 28,000원 -10% 1400원 23,800원 >

책 이미지

문과생을 위한 인공지능 입문
eBook 미리보기

책 정보

· 제목 : 문과생을 위한 인공지능 입문 (수학, 통계 지식 없이 배우는)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791161757339
· 쪽수 : 524쪽
· 출판일 : 2023-04-27

책 소개

누구나 쉽게 인공지능 개발을 경험할 수 있도록 수학적 설명을 최대한 배제했다. 코딩에 대한 기초 지식 없이도 쉽게 인공지능 개발에 도전할 수 있도록 개발 환경 구축부터 파이썬의 기초적인 사용법을 다룬다.

목차

1장. 들어가며
__1.1 인공지능이란 무엇인가?
__1.2 이 책의 특징
__1.3 이 책의 구성
____1.3.1 파이썬의 기초
____1.3.2 인공지능 개발 파이프라인
____1.3.3 인공지능 개발 실습
__1.4 요약


2장. 인공지능과 사회 윤리
__2.1 인공지능과 윤리
__2.2 데이터 수집과 윤리
__2.3 인공지능과 데이터 편향
__2.4 인공지능과 사회적 영향
__2.5 요약


3장. 파이썬과 구글 코랩 사용하기
__3.1 왜 파이썬을 사용해야 하나?
__3.2 구글 코랩은 무엇인가?
__3.3 구글 코랩의 A to Z
____3.3.1 구글 코랩 실행하기
____3.3.2 코드셀과 텍스트셀
____3.3.3 코랩 노트북 공유 방법
____3.3.4 구글 코랩 코드 히스토리 보기
__3.4 구글 코랩에서 외부 파일 사용하기
__3.5 구글 코랩 중단하기
____3.5.1 실행 중인 코드 중단하기
____3.5.2 런타임 재시작하기 및 런타임 초기화하기
__3.6 요약


4장. 파이썬과 친해지기 1
__4.1 파이썬 시작하기
____4.1.1 안녕, 세상아! 출력하기
____4.1.2 주석 달기
__4.2 파이썬을 사용해 계산 결과 출력하기
____4.2.1 파이썬에서의 사칙 연산
____4.2.2 왜 마지막 값만 출력될까?
__4.3 파이썬에서 사용되는 데이터의 종류
____4.3.1 파이썬에서 사용하는 네 가지 데이터 유형
____4.3.2 문자열에서의 따옴표 사용
____4.3.3 데이터 값 사이의 연산
____4.3.4 큰 숫자의 표시
____4.3.5 데이터 간 유형 변환
__4.4 문자열 인덱싱과 슬라이싱
____4.4.1 인덱싱 실습
____4.4.2 슬라이싱
__4.5 요약
__연습문제 1


5장. 파이썬과 친해지기 2
__5.1 변수
____5.1.1 변수에 데이터 저장하기
____5.1.2 변수명 정하기
____5.1.3 사용자에게 데이터를 입력받아 변수에 저장하기
__5.2 리스트
____5.2.1 리스트 만들기
____5.2.2 리스트에 저장되는 데이터의 유형
____5.2.3 리스트의 인덱싱과 슬라이싱
____5.2.4 리스트의 연산
__5.3 리스트 안의 데이터 다루기
____5.3.1 리스트 안의 데이터 수정
____5.3.2 명령어를 사용해 리스트 안의 요소 처리
____5.3.3 리스트의 복제
__5.4 딕셔너리
____5.4.1 딕셔너리 만들기
____5.4.2 딕셔너리 인덱싱
__5.5 딕셔너리 안의 데이터 다루기
____5.5.1 딕셔너리 데이터 추가
____5.5.2 딕셔너리 안의 데이터 수정
____5.5.3 딕셔너리 안의 데이터 삭제
____5.5.4 딕셔너리 복제
__5.6 요약
__연습문제 2


6장. 조건문과 반복문
__6.1 연산자
____6.1.1 대입연산자
____6.1.2 비교연산자
____6.1.3 멤버연산자
____6.1.4 식별연산자
__6.2 조건문의 활용
____6.2.1 조건문의 형식
____6.2.2 복수의 조건문 사용법
____6.2.3 if, elif, else의 활용
__6.3 반복문
____6.3.1 반복문은 왜 필요한가?
____6.3.2 while을 사용해 조건이 만족할 때까지 반복해 실행하기
____6.3.3 while문과 조건문의 사용
__6.4 for를 사용해 일정 범위에서 반복문을 사용하기
____6.4.1 for문의 기본 문법
____6.4.2 for의 중첩 사용
____6.4.3 for와 if, continue의 사용
__6.5 리스트의 요소 자동으로 채우기
____6.5.1 리스트 컨프리헨션의 형식
____6.5.2 리스트 컴프리헨션과 조건문 사용하기
__6.6 딕셔너리의 요소 자동으로 채우기
____6.6.1 딕셔너리 컴프리헨션 만들기
____6.6.2 조건문과 함께 딕셔너리 컴프리헨션 사용하기
__6.7 요약
__연습문제 3


7장. 판다스의 활용
__7.1 판다스
____7.1.1 판다스 사용할 준비하기
____7.1.2 데이터 시리즈
____7.1.3 데이터 시리즈의 특성
__7.2 데이터프레임
____7.2.1 데이터프레임 만들기
____7.2.2 데이터프레임 인덱싱하기
__7.3 외부 데이터 관리하기
____7.3.1 데이터 불러오기
__7.4 데이터프레임 살펴보기
____7.4.1 데이터 특성 확인하기
____7.4.2 데이터프레임의 연산
____7.4.3 조건에 맞는 데이터만 가져오기
__7.5 데이터 합치기
____7.5.1 .append()를 사용해 반복되는 데이터 합치기
____7.5.2 .merge()를 사용해 독립적인 두 데이터 합치기
__7.6 탐색적 데이터 분석 및 처리
____7.6.1 데이터프레임에 대한 기본 정보 살펴보기
____7.6.2 데이터 탐색적 분석하기
____7.6.3 열에 대한 여러 정보를 한번에 보기
__7.7 명목 변수를 사용해서 그룹별로 기술 통계치 출력하기
____7.7.1 명목 변수란?
____7.7.2 명목 변수를 사용해 데이터 나눠 보기
__7.8 요약
__연습문제 4


8장. 데이터 시각화 실습
__8.1 데이터 시각화
____8.1.1 시각화를 위해서 사용한 seaborn 모듈
____8.1.2 간단한 선 그래프 그리기
__8.2 분포도를 사용해 데이터 분포 보기
____8.2.1 변수 하나의 분포도 시각화하기
____8.2.2 여러 데이터의 분포도를 시각화하기
____8.2.3 막대의 크기 조절
____8.2.4 명목 변수를 사용해 하나의 분포도에 다른 그룹을 시각화하기
__8.3 박스플롯을 사용해 데이터 특성 파악하기
____8.3.1 박스플롯의 개념
____8.3.2 박스플롯 시각화
____8.3.3 명목 변수를 사용해 그룹별로 박스플롯 시각화하기
____8.3.4 여러 그룹의 분포 살펴보기
__8.4 두 변수의 관계를 산점도를 사용해 시각화하기
____8.4.1 산점도 그리기
____8.4.2 그룹에 따라 산점도를 다르게 시각화하기
____8.4.3 데이터별 크기 조절
__8.5 히트맵을 사용해 두 변수의 빈도 구하기
____8.5.1 히트맵의 개념과 실습 데이터
____8.5.2 피벗테이블 만들기
____8.5.3 히트맵 만들기
__8.6 워드클라우드로 단어 빈도 시각화하기
____8.6.1 분석 준비하기
____8.6.2 데이터 전처리
____8.6.3 단어 빈도 수 시각화하기
____8.6.4 워드클라우드 조정하기
__8.7 요약
__연습문제 5


9장. 인공지능 개발 파이프라인
__9.1 인공지능 개발 워크플로
__9.2 문제 제기
__9.3 데이터 파악
__9.4 데이터 전처리 및 정제
__9.5 모델 학습, 검증, 평가
__9.6 요약


10장. 데이터 수집/이해/처리
__10.1 데이터란 무엇인가?
____10.1.1 구조화된 데이터와 비구조화된 데이터
__10.2 데이터 수집
____10.2.1 탐색적 데이터 분석
__10.3 데이터 전처리 실습
____10.3.1 결측값 처리
____10.3.2 결측값 처리 실습
____10.3.3 이상치 처리 실습
__10.4 데이터 정제
____10.4.1 기존의 데이터를 사용해 새로운 데이터로 변환
____10.4.2 데이터 리코딩
____10.4.3 원-핫-인코딩
__10.5 요약


11장. 모델과 학습
__11.1 모델이란?
__11.2 인공지능에서 학습이란?
__11.3 지도 학습
__11.4 비지도 학습
__11.5 강화학습
__11.6 요약


12장. 모델 검증 및 평가
__12.1 모델을 왜 평가하나?
____12.1.1 지도 학습을 사용해 학습한 모델의 평가
____12.1.2 비지도 학습을 사용해 학습한 모델의 평가
__12.2 과소적합과 과대적합 문제
__12.3 모델 검증과 평가 실습
____12.3.1 과소적합 및 과대적합 실습 준비
____12.3.2 회귀분석 학습 및 평가
__12.4 교차 검증
____12.4.1 교차 검증의 개념
____12.4.2 K-겹 교차 검증
____12.4.3 K-겹 교차 검증 실습
__12.5 모델 평가
____12.5.1 예측 모델
____12.5.2 분류 모델
____12.5.3 비지도 학습에서의 평가
__12.6 요약


13장. 예측 문제 해결하기(비가 오는 날은 영화 관객 수가 줄어들까?)
__13.1 들어가며
__13.2 선형 회귀 모델에 대한 개념적 설명
__13.3 인공지능 모델 학습 준비
____13.3.1 준비하기
____13.3.2 데이터 불러오기
__13.4 데이터 탐색적 분석
__13.5 예측 모델 학습
____13.5.1 데이터셋 준비
____13.5.2 데이터셋 분리
__13.6 모델 학습
__13.7 정규화
__13.8 모델 검증 및 평가
____13.8.1 모델 평가
__13.9 K-겹 교차 검증
__13.10 모델 평가 활용
__13.11 학습된 모델로 2020년 영화 관객 수 예측해 보기
__13.12 요약
__연습문제 6


14장. 분류 문제 해결하기(누가 신문을 읽고 있을까?)
__14.1 들어가며
____14.1.1 서포트 벡터 머신의 개념
__14.2 분류 모델 학습 준비
____14.2.1 데이터 준비
____14.2.2 탐색적 분석
__14.3 분류 모델 학습
____14.3.1 데이터 준비
____14.3.2 분류 모델 학습
__14.4 모델 평가
____14.4.1 혼동행렬
____14.4.2 혼동행렬을 사용해 평가 지표 구하기
____14.4.3 Receiver Operating Characteristics(ROC) 커브를 사용해 모델 평가하기
__14.5 모델 성능 개선
____14.5.1 모델 개선: 분류에 사용하는 특성이 많아지면 모델 성능이 향상될까?
____14.5.2 변수를 계속 추가하면 모델의 성능이 계속 향상될까?
____14.5.3 모델 성능 비교
____14.5.4 K-겹 교차 검증
__14.6 요약
__연습문제 7


15장. 군집화 문제 해결하기(강수량과 평균 기온으로 사계절을 구분할 수 있을까?
__15.1 K-평균 군집화의 개념
__15.2 K-평균 군집화 모델 학습
____15.2.1 준비하기
____15.2.2 탐색적 분석
____15.2.3 모델 학습
____15.2.4 학습된 모델 확인
____15.2.5 K-평균 군집 모델 시각화
__15.3 K-평균 군집화 모델 평가
____15.3.1 실루엣 분석의 개념
____15.3.2 각 데이터별 실루엣 계수 구하기
____15.3.3 실루엣 계수를 사용해 모델 성능 비교
____15.3.4 실루엣 분석 시각화
__15.4 요약
__연습문제 8


16장. 텍스트를 자동으로 분류하기(토픽 모델링을 사용한 신문사설 자동 분류 모델)
__16.1 토픽 모델링이란?
____16.1.1 토픽 모델링의 개념
____16.1.2 LDA 토픽 모델링
____16.1.3 토픽 모델링 실습 과정
__16.2 텍스트 전처리
____16.2.1 분석 준비하기
____16.2.2 텍스트 전처리
____16.2.3 특수 기호 없애기
____16.2.4 형태소 분석
____16.2.5 정규화
____16.2.6 불용어 제거
__16.3 토픽 모델링 실습
____16.3.1 토모토파이 설치
____16.3.2 토모토파이 기본 사용 방법
__16.4 최적의 K값 찾기
____16.4.1 토픽 모델링 함수 정의
____16.4.2 K값 찾기
____16.4.3 혼란도 값의 시각화
__16.5 토픽 모델링 결과 탐색
____16.5.1 토픽별로 확률이 높은 단어 출력하기
____16.5.2 각 문서별 토픽 분포 구하기
____16.5.3 토픽 이름 붙이기
____16.5.4 토픽 모델링 시각화
__16.6 요약
__연습문제 9

저자소개

김장현 (지은이)    정보 더보기
성균관대 교수, 인간AI인터랙션융합전공·글로벌융합학부. 문과 출신으로 공학 교수를 하면서 AI융합교육을 부르짖고 있는 보기 드문 올라운드형 지식인이다. 정보기술, 데이터과학 분야 해외 학술지 편집위원, 다수의 권위 있는 학술지 논문 게재, 국내외 기업, 공공기관 컨설팅 경력만으로 그를 정의하는 것은 불가능하다. 학생들의 마음에 학구열의 불꽃을 일으키는 ‘마음의 방화범’이 곧 교수라는 업의 본질이라고 믿고 있다. 요즘 그는 인류의 타 행성 이주 시 AI의 역할을 찾기 위한 연구를 하고 있다. 『문과생을 위한 인공지능 입문』의 저자이자 tvN 〈벌거벗은 세계사〉 ‘인공지능편’ 출연자이기도 하다.
펼치기
김민철 (지은이)    정보 더보기
중앙대학교에서 신문방송학 학사와 석사를 취득했다. 이후, 미국 인디애나 대학교(Indiana University)에서 매스커뮤니케이션학 박사학위를 받았다. 2020년 성균관대학교 글로벌융합학부에서 박사후 연구원으로 재직하면서 데이터사이언스와 인공지능 기초에 관한 강의를 했다. 현재는 중앙대학교 미디어커뮤니케이션 학부의 조교수로 재직 중이다. 빅데이터와 인공지능을 활용하여 디지털 플랫폼화가 미디어와 커뮤니케이션 현상에 미치는 영향에 관한 연구를 하고 있다.
펼치기

책속에서



추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791161758824