logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

오토케라스로 만드는 AutoML

오토케라스로 만드는 AutoML

(몇 줄의 코딩으로 이용할 수 있는 딥러닝)

루이스 소브레쿠에바 (지은이), 이진형 (옮긴이)
에이콘출판
25,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
22,500원 -10% 0원
1,250원
21,250원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,000원 -10% 1000원 17,000원 >

책 이미지

오토케라스로 만드는 AutoML
eBook 미리보기

책 정보

· 제목 : 오토케라스로 만드는 AutoML (몇 줄의 코딩으로 이용할 수 있는 딥러닝)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161757452
· 쪽수 : 208쪽
· 출판일 : 2023-05-31

책 소개

프로젝트에서 최첨단 AI 알고리듬을 개발하고 사용하는 방법을 알려주는 책이다. 자동화된 머신러닝에 대한 높은 수준의 소개로 시작하여 머신러닝 접근 방식을 시작하는 데 필요한 모든 개념을 설명한다. 그 다음 오토케라스를 사용하여 문서에 대한 감정 분석을 수행하는 방법을 다룬다.

목차

제1부 AutoML 기초

__1장. 자동화된 머신러닝 소개
____표준 ML 워크플로의 구조
______데이터 수집
______데이터 전처리
______모델 배포
______모델 모니터링
____AutoML의 정의
______표준 접근 방식과의 차이점
____AutoML의 유형
______피처 엔지니어링 자동화
______모델 선택 및 하이퍼파라미터 최적화 자동화
______신경망 아키텍처 선택 자동화
____요약
____더 읽을거리

__2장. 오토케라스 시작하기
____기술 요구사항
____딥러닝이란 무엇인가?
____신경망이란 무엇이며 어떻게 학습하는가?
____딥러닝 모델은 어떻게 학습하는가?
____왜 오토케라스인가?
______오토케라스 실험 실행 방법
____오토케라스 설치
______클라우드에 오토케라스 설치
______오토케라스 로컬 설치
____Hello MNIST: 첫 번째 오토케라스 실험 구현
______필요한 패키지 가져오기
______MNIST 데이터셋 가져오기
______숫자는 어떻게 분포하는가?
______이미지 분류 모델 만들기
______테스트 세트로 모델 평가
______모델 시각화
______이미지 회귀 분류 모델 만들기
______테스트 세트로 모델 평가
______모델 시각화
____요약

__3장. 오토케라스로 머신러닝 파이프라인 자동화하기
____텐서 이해하기
______텐서란 무엇인가?
______텐서의 유형
____딥러닝 모델을 제공하기 위한 데이터 준비
______신경망 모델을 위한 데이터 전처리 작업
____여러 형식으로 오토케라스에 데이터 로드
____학습 및 평가를 위한 데이터셋 분할
______데이터셋을 분할해야 하는 이유
______데이터셋을 분할하는 방법
____요약

제2부 오토케라스 활용

__4장. 오토케라스를 사용한 이미지 분류 및 회귀
____기술 요구사항
____CNN 이해하기
______합성곱 층
______풀링 층
______CNN 구조
______기존 신경망 넘어서기
____CIFAR-10 이미지 분류 모델 만들기
____강력한 이미지 분류 모델 생성 및 파인튜닝
______모델 성능 향상
______테스트 세트로 모델 평가
______모델 시각화
____사람의 나이를 알아내는 이미지 회귀 분석기 만들기
____강력한 이미지 회귀 분석기 생성 및 파인튜닝
______모델 성능 향상
______테스트 세트로 모델 평가
______모델 시각화
____요약

__5장. 오토케라스를 사용한 텍스트 분류 및 회귀
____기술 요구사항
____텍스트 데이터 작업
______토큰화
______벡터화
____RNN 이해하기
____1차원 CNN(Conv1D)
____이메일 스팸 감지기 만들기
______스팸 예측기 만들기
______모델 평가
______모델 시각화
____소셜 미디어에서 뉴스 인기도 예측
______텍스트 회귀 모델 생성
______모델 평가
______모델 시각화
______모델 성능 향상
______테스트셋으로 모델 평가
____요약

__6장. 오토케라스를 사용한 구조화된 데이터 작업
____기술 요구사항
____구조화된 데이터 이해하기
____구조화된 데이터 작업
____타이타닉 생존자를 예측하기 위한 구조화된 데이터 분류 모델 만들기
______분류 모델 만들기
______모델 평가
______모델 시각화
____보스턴 주택 가격을 예측하기 위한 구조화된 데이터 회귀 분석 모델 만들기
______구조 데이터 회귀 분석 모델 만들기
______모델 평가
______모델 시각화
____요약

__7장. 오토케라스를 사용한 감정 분석
____기술 요구사항
____감정 분석기 만들기
____감정 예측 모델 만들기
____모델 평가
____모델 시각화
____특정 문장의 감정 분석
____요약

__8장. 오토케라스를 사용한 주제 분류
____기술 요구사항
____주제 분류 이해하기
____뉴스 주제 분류 모델 만들기
______분류 모델 만들기
______모델 평가
______모델 시각화
______모델 평가
____모델 검색 공간 사용자 정의
______요약

제3부 고급 오토케라스

__9장. 다중 모드 및 다중 작업 데이터
____기술 요구사항
____다중 입력 또는 출력이 있는 모델 탐색
______오토모델이란 무엇인가?
______다중 모드란 무엇인가?
______다중 작업이란 무엇인가?
____다중 모드 / 다중 작업 모델 생성
______모델 생성
______모델 시각화
____검색 공간 사용자 정의
____요약

__10장. 모델 내보내기 및 시각화
____기술 요구사항
____모델 내보내기
______모델을 저장하고 불러오는 방법
____텐서보드로 모델 시각화
______콜백으로 모델 상태 기록
______텐서보드 설정 및 로드
______TensorBoard.dev와 ML 실험 결과 공유
____ClearML로 모델 시각화 및 비교
______코드에 ClearML 추가
______실험 비교
____요약
______마치며

저자소개

루이스 소브레쿠에바 (지은이)    정보 더보기
현재 카비파이(Cabify)에서 근무하는 선임 소프트웨어 엔지니어이자 ML/DL 실무자다. OpenAI 프로젝트에 기여했으며 오토케라스 프로젝트에도 기여했다.
펼치기
이진형 (옮긴이)    정보 더보기
데이터에 숨어 있는 인사이트를 찾는 일을 좋아합니다. 11번가에서 데이터 엔지니어와 데이터 과학자 역할 사이에서 판매자와 구매자가 사용하는 개인화 추천 서비스를 제공하기 위해 데이터 파이프라인과 데이터 모델을 개발했습니다. 현재는 카드 혜택 통합 관리 테크핀 스타트업 빅쏠에서 데이터 과학자로 일합니다. _현) 빅쏠 데이터인사이트팀 리더 _전) 11번가 데이터 과학자 _전) 위세아이텍 데이터 과학자
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791161758985