logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

해석 가능한 AI

해석 가능한 AI

(설명 가능한 머신러닝 시스템 구축)

아제이 탐피 (지은이), 최영재 (옮긴이)
에이콘출판
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,500원 -10% 0원
1,750원
29,750원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

해석 가능한 AI
eBook 미리보기

책 정보

· 제목 : 해석 가능한 AI (설명 가능한 머신러닝 시스템 구축)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791161758411
· 쪽수 : 396쪽
· 출판일 : 2024-04-30

책 소개

AI 기술이 발전하고 활용 사례가 늘어남에 따라 모델이 한 예측의 안전성과 신뢰성을 확보하기 위해 왜 그런 예측에 도달했는지, 또 어떻게 하면 결과가 달라졌을지 설명을 해야 할 상황도 늘어나고 있다. 머신러닝 모델에 최신 해석 기술을 적용해 공정하고 설명 가능한 AI 시스템을 구축하는 데 도움을 주고자 하는 책이다.

목차

1부. 해석 가능성 개요

1장. 소개
1.1 진단+ AI ― AI 시스템 예제
1.2 머신러닝 시스템 유형
1.2.1 데이터 표현
1.2.2 지도 학습
1.2.3 비지도 학습
1.2.4 강화 학습
1.2.5 진단+ AI를 위한 머신러닝 시스템
1.3 진단+ AI 구축
1.4 진단+ AI의 문제점
1.4.1 데이터 누출
1.4.2 편향
1.4.3 규제 미준수
1.4.4 (개념) 드리프트
1.5 강건한 진단+ AI 시스템 구축
1.6 해석 가능성 대 설명 가능성
1.6.1 해석 기법 유형
1.7 이 책에서는 무엇을 배우나?
1.7.1 이 책을 읽는 동안 어떤 도구를 사용하게 되는가?
1.7.2 이 책을 읽기 전에 무엇을 알아야 하는가?
요약

2장. 화이트박스 모델
2.1 화이트박스 모델
2.2 진단+ ― 당뇨병 진행
2.3 선형 회귀
2.3.1 선형 회귀 해석
2.3.2 선형 회귀의 한계
2.4 결정 트리
2.4.1 결정 트리 해석
2.4.2 결정 트리의 한계
2.5 GAM
2.5.1 회귀 스플라인
2.5.2 진단+ 당뇨병을 위한 GAM
2.5.3 GAM 해석
2.5.4 GAM 한계
2.6 앞으로 살펴볼 블랙박스 모델
요약

2부. 모델 처리 해석

3장. 모델 애그노스틱 기법: 글로벌 해석 가능성
3.1 고등학교 학생 성적 예측기
3.1.1 탐색적 데이터 분석
3.2 트리 앙상블
3.2.1 랜덤 포레스트 훈련
3.3 랜덤 포레스트 해석
3.4 모델 애그노스틱 기법: 글로벌 해석 가능성
3.4.1 부분 의존성 도표
3.4.2 특성 상호작용
요약

4장. 모델 애그노스틱 기법: 로컬 해석 가능성
4.1 진단+ AI: 유방암 진단
4.2 탐색적 데이터 분석
4.3 심층 신경망
4.3.1 데이터 준비
4.3.2 DNN 훈련 및 평가
4.4 DNN 해석
4.5 LIME
4.6 SHAP
4.7 앵커
요약

5장. 돌출 매핑
5.1 진단+ AI: 침습성 관 암종 탐지
5.2 탐색적 데이터 분석
5.3 CNN
5.3.1 데이터 준비
5.3.2 훈련 및 평가
5.4 CNN 해석
5.4.1 확률 풍경
5.4.2 LIME
5.4.3 시각적 귀속 기법
5.5 바닐라 역전파
5.6 유도 역전파
5.7 기타 경사 기반 방법
5.8 Grad-CAM 및 유도 Grad-CAM
5.9 어떤 귀속 기법을 사용해야 할까?
요약

3부. 모델 표현 해석

6장. 레이어와 유닛의 이해
6.1 시각적 이해
6.2 합성곱 신경망: 요약
6.3 망 해부 프레임워크
6.3.1 개념 정의
6.3.2 망 조사
6.3.3 일치 정도 정량화
6.4 레이어 및 유닛 해석
6.4.1 망 해부 실행
6.4.2 개념 식별기
6.4.3 학습 과업별 개념 식별기
6.4.4 개념 식별기 시각화
6.4.5 망 해부의 한계
요약

7장. 의미론적 유사성의 이해
7.1 감정 분석
7.2 탐색적 데이터 분석
7.3 신경 단어 임베딩
7.3.1 원 핫 인코딩
7.3.2 워드투벡
7.3.3 글로브 임베딩
7.3.4 감성 분석 모델
7.4 의미론적 유사성 해석
7.4.1 유사성 측정
7.4.2 PCA
7.4.3 t-SNE
7.4.4 의미론적 유사성 시각화 검증
요약

4부. 공정성과 편향

8장. 공정성과 편향 완화
8.1 성인 소득 예측
8.1.1 탐색적 데이터 분석
8.1.2 예측 모델
8.2 공정성 개념
8.2.1 인구통계학적 동등성
8.2.2 기회와 확률의 평등
8.2.3 기타 공정성 개념
8.3 해석 가능성과 공정성
8.3.1 입력 특성을 통한 차별
8.3.2 표현을 통한 차별
8.4 편향 완화
8.4.1 무지를 통한 공정성
8.4.2 가중치 재설정을 통한 라벨 편향 수정
8.5 데이터 세트용 데이터시트
요약

9장. 설명 가능한 AI로 가는 길
9.1 설명 가능한 AI
9.2 반사실적 설명
요약

부록 A. 준비하기
A.1 파이썬
A.2 깃 코드 저장소
A.3 콘다 환경
A.4 주피터 노트북
A.5 도커

부록 B. 파이토치
B.1 파이토치는 무엇인가?
B.2 파이토치 설치
B.3 텐서
B.3.1 데이터 유형
B.3.2 CPU 및 GPU 텐서
B.3.3 운영
B.4 데이터 세트 및 데이터로더
B.5 모델링
B.5.1 자동 미분
B.5.2 모델 정의
B.5.3 훈련

저자소개

아제이 탐피 (지은이)    정보 더보기
머신러닝에 대한 확고한 배경을 갖고 있다. 신호 처리와 머신러닝에 중점을 둔 주제의 논문으로 박사 학위를 받았다. 5G 셀룰러 네트워크에 적용되는 강화 학습, 볼록 최적화, 전통 머신러닝 기술에 대한 주제로 주요 콘퍼런스 및 잡지에 논문을 발표했다. 현재 책임 있는 AI와 공정성에 관심을 두고 대형 기술 회사에서 머신러닝 엔지니어로 근무하고 있다. 과거에는 마이크로소프트의 선임 데이터 과학자로서 제조, 소매, 금융 등 여러 산업의 고객을 위한 복잡한 AI 솔루션을 배포했다.
펼치기
아제이 탐피의 다른 책 >
최영재 (옮긴이)    정보 더보기
소프트웨어 분야에서 일하면서 좀 더 좋은 품질의 제품을 만들기 위해 노력해 왔다. 현재는 소프트웨어 공학과 관련된 강의를 하고 있으며 어떻게 하면 사용자가 안심하고 사용할 수 있는 AI 소프트웨어를 만들 수 있는지를 고민하고 있다. 소프트웨어와 관련된 국내외 표준과 여러 지식 체계의 개발에 참여하고 있으며 최근에는 누구나 믿고 사용할 수 있는 AI 시스템을 만드는 방법에 관심을 갖고 있다. 예측 모델, 추천 시스템 등 AI가 인간의 삶에 줄 수 있는 많은 가치를 실현하기 위해서는 모델이 가진 한계를 이해하고 AI가 뭔가를 어떤 방식으로 예측했는지 이해할 필요가 있다고 생각한다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책