책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791161758411
· 쪽수 : 396쪽
· 출판일 : 2024-04-30
책 소개
목차
1부. 해석 가능성 개요
1장. 소개
1.1 진단+ AI ― AI 시스템 예제
1.2 머신러닝 시스템 유형
1.2.1 데이터 표현
1.2.2 지도 학습
1.2.3 비지도 학습
1.2.4 강화 학습
1.2.5 진단+ AI를 위한 머신러닝 시스템
1.3 진단+ AI 구축
1.4 진단+ AI의 문제점
1.4.1 데이터 누출
1.4.2 편향
1.4.3 규제 미준수
1.4.4 (개념) 드리프트
1.5 강건한 진단+ AI 시스템 구축
1.6 해석 가능성 대 설명 가능성
1.6.1 해석 기법 유형
1.7 이 책에서는 무엇을 배우나?
1.7.1 이 책을 읽는 동안 어떤 도구를 사용하게 되는가?
1.7.2 이 책을 읽기 전에 무엇을 알아야 하는가?
요약
2장. 화이트박스 모델
2.1 화이트박스 모델
2.2 진단+ ― 당뇨병 진행
2.3 선형 회귀
2.3.1 선형 회귀 해석
2.3.2 선형 회귀의 한계
2.4 결정 트리
2.4.1 결정 트리 해석
2.4.2 결정 트리의 한계
2.5 GAM
2.5.1 회귀 스플라인
2.5.2 진단+ 당뇨병을 위한 GAM
2.5.3 GAM 해석
2.5.4 GAM 한계
2.6 앞으로 살펴볼 블랙박스 모델
요약
2부. 모델 처리 해석
3장. 모델 애그노스틱 기법: 글로벌 해석 가능성
3.1 고등학교 학생 성적 예측기
3.1.1 탐색적 데이터 분석
3.2 트리 앙상블
3.2.1 랜덤 포레스트 훈련
3.3 랜덤 포레스트 해석
3.4 모델 애그노스틱 기법: 글로벌 해석 가능성
3.4.1 부분 의존성 도표
3.4.2 특성 상호작용
요약
4장. 모델 애그노스틱 기법: 로컬 해석 가능성
4.1 진단+ AI: 유방암 진단
4.2 탐색적 데이터 분석
4.3 심층 신경망
4.3.1 데이터 준비
4.3.2 DNN 훈련 및 평가
4.4 DNN 해석
4.5 LIME
4.6 SHAP
4.7 앵커
요약
5장. 돌출 매핑
5.1 진단+ AI: 침습성 관 암종 탐지
5.2 탐색적 데이터 분석
5.3 CNN
5.3.1 데이터 준비
5.3.2 훈련 및 평가
5.4 CNN 해석
5.4.1 확률 풍경
5.4.2 LIME
5.4.3 시각적 귀속 기법
5.5 바닐라 역전파
5.6 유도 역전파
5.7 기타 경사 기반 방법
5.8 Grad-CAM 및 유도 Grad-CAM
5.9 어떤 귀속 기법을 사용해야 할까?
요약
3부. 모델 표현 해석
6장. 레이어와 유닛의 이해
6.1 시각적 이해
6.2 합성곱 신경망: 요약
6.3 망 해부 프레임워크
6.3.1 개념 정의
6.3.2 망 조사
6.3.3 일치 정도 정량화
6.4 레이어 및 유닛 해석
6.4.1 망 해부 실행
6.4.2 개념 식별기
6.4.3 학습 과업별 개념 식별기
6.4.4 개념 식별기 시각화
6.4.5 망 해부의 한계
요약
7장. 의미론적 유사성의 이해
7.1 감정 분석
7.2 탐색적 데이터 분석
7.3 신경 단어 임베딩
7.3.1 원 핫 인코딩
7.3.2 워드투벡
7.3.3 글로브 임베딩
7.3.4 감성 분석 모델
7.4 의미론적 유사성 해석
7.4.1 유사성 측정
7.4.2 PCA
7.4.3 t-SNE
7.4.4 의미론적 유사성 시각화 검증
요약
4부. 공정성과 편향
8장. 공정성과 편향 완화
8.1 성인 소득 예측
8.1.1 탐색적 데이터 분석
8.1.2 예측 모델
8.2 공정성 개념
8.2.1 인구통계학적 동등성
8.2.2 기회와 확률의 평등
8.2.3 기타 공정성 개념
8.3 해석 가능성과 공정성
8.3.1 입력 특성을 통한 차별
8.3.2 표현을 통한 차별
8.4 편향 완화
8.4.1 무지를 통한 공정성
8.4.2 가중치 재설정을 통한 라벨 편향 수정
8.5 데이터 세트용 데이터시트
요약
9장. 설명 가능한 AI로 가는 길
9.1 설명 가능한 AI
9.2 반사실적 설명
요약
부록 A. 준비하기
A.1 파이썬
A.2 깃 코드 저장소
A.3 콘다 환경
A.4 주피터 노트북
A.5 도커
부록 B. 파이토치
B.1 파이토치는 무엇인가?
B.2 파이토치 설치
B.3 텐서
B.3.1 데이터 유형
B.3.2 CPU 및 GPU 텐서
B.3.3 운영
B.4 데이터 세트 및 데이터로더
B.5 모델링
B.5.1 자동 미분
B.5.2 모델 정의
B.5.3 훈련