logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

비즈니스 데이터 과학

비즈니스 데이터 과학

(비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남)

맷 태디 (지은이), 이준용 (옮긴이)
한빛미디어
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,500원 -10% 0원
1,750원
29,750원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 28,000원 -10% 1400원 23,800원 >

책 이미지

비즈니스 데이터 과학
eBook 미리보기

책 정보

· 제목 : 비즈니스 데이터 과학 (비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791162245729
· 쪽수 : 420쪽
· 출판일 : 2022-06-29

책 소개

비즈니스 분야에서 자주 언급되는 문제와 관련된 통계학, 경제학 개념 및 빅데이터 기술을 소개한다. 이 책에는 아마존과 마이크로소프트에서 데이터 과학팀을 이끌고 시카고 대학교에서 계량경제학 및 통계학 교수로 재직하면서 데이터 과학 커리큘럼을 개발한 저자의 경험이 고스란히 담겨있다.

목차

CHAPTER 0 들어가며
두 도표에 대한 이야기
빅데이터와 머신러닝
계산

CHAPTER 1 불확실성
1.1 빈도주의 관점에서의 불확실성과 부트스트랩
_알고리즘 1 | 비모수 부트스트랩
_심화학습 | 편향된 추정량과 부트스트랩 사용
_알고리즘 2 | 신뢰구간을 위한 비모수 부트스트랩
1.2 가설 검정과 거짓 발견 비율 조절
_알고리즘 3 | BH FDR 제어
_심화학습 | BH 알고리즘이 작동하는 이유
1.3 베이지안 추론

CHAPTER 2 회귀
2.1 선형 모델
2.2 로지스틱 회귀
2.3 편차와 가능도
2.4 회귀 불확실성
2.5 공간과 시간

CHAPTER 3 정규화
3.1 표본 외 성능
_알고리즘 4 | K-폴드 표본 외 검증
3.2 정규화 경로
_알고리즘 5 | 전진 단계별 회귀
_알고리즘 6 | lasso 정규화 경로
3.3 모델 선택
_알고리즘 7 | K-폴드 CV
_알고리즘 8 | K-폴드 CV lasso
3.4 lasso에 대한 불확실성 정량화
_알고리즘 9 | lasso 신뢰구간을 위한 모수적 부트스트랩
_알고리즘 10 | √n 학습에서 서브샘플링 CI

CHAPTER 4 분류
4.1 최근접 이웃
_알고리즘 11 | K 최근접 이웃
4.2 확률, 비용, 분류
_알고리즘 12 | 맵리듀스 프레임워크
4.3 다항 로지스틱 회귀
4.4 분산 다항 회귀
4.5 분산과 빅데이터

CHAPTER 5 실험
5.1 무작위 대조 시험
5.2 유사 실험 설계
5.3 도구 변수
_알고리즘 13 | 2SLS

CHAPTER 6 제어
6.1 조건부 무시가능성과 선형 처리 효과
6.2 고차원 교란 조정
_알고리즘 14 | LTE lasso 회귀
6.3 표본 분할과 직교 머신러닝
_알고리즘 15 | LTE를 위한 직교 머신러닝
6.4 이종 처리 효과
6.5 합성 제어
_알고리즘 15 | 합성 제어

CHAPTER 7 인수분해
7.1 클러스터링
_알고리즘 17 | K-평균
7.2 요인 모델과 PCA
_알고리즘 18 | 주성분 분석
7.3 주성분 회귀
_알고리즘 19 | 주성분 (lasso) 회귀
7.4 부분 최소제곱법
_알고리즘 20 | 주변 회귀
_알고리즘 21 | 부분 최소제곱법(PLS)

CHAPTER 8 데이터로서의 테스트
8.1 토큰화
8.2 텍스트 회귀
8.3 토픽 모델
_알고리즘 22 | 희소 데이터를 위한 PCA
8.4 다항 역회귀
8.5 협업 필터링
8.6 워드 임베딩

CHAPTER 9 비모수
9.1 의사결정트리
_알고리즘 23 | CART 알고리즘
9.2 랜덤 포레스트
_알고리즘 24 | 랜덤 포레스트(RF)
_알고리즘 25 | 경험적 베이지안 포레스트(EBF)
9.3 인과 트리
_알고리즘 26 | 인과 트리(CT)
9.4 반모수와 가우스 프로세스

CHAPTER 10 인공지능
10.1 인공지능이란 무엇인가?
10.2 범용 머신러닝
10.3 딥러닝
10.4 확률적 경사하강법
10.5 강화 학습
10.6 상황에 따른 인공지능

저자소개

맷 태디 (지은이)    정보 더보기
아마존 부사장. 2008년부터 2018년까지 시카고 대학교 부스 경영대학원에서 계량경제학 및 통계학 교수로 재직하면서 데이터 과학 커리큘럼을 개발했습니다. 마이크로소프트의 수석 연구원(Head of Economics and Data Science, Business AI)과 이베이의 연구원(Research Fellow)을 포함하여 다양한 산업 분야에서 일한 경험이 있습니다.
펼치기
이준용 (옮긴이)    정보 더보기
인공지능과 빅데이터 기술에 관심이 많은 연구원. 한국과학기술원(KAIST)에서 전자공학 박사학위를 받고, 일본 ATR IRC 연구소에서 인간-로봇 상호작용에 대해 연구했으며, 미국 아이오와 주립대학교에서 대사회로 관련 데이터베이스를 구축했습니다다. 2014년부터 2021년까지 미국 퍼시픽 노스웨스트 국립연구소에서 다양한 생명과학 연구에 참여했습니다다. 현재는 한 바이오텍 기업에서 수석 데이터 과학자로 암 진단과 관련된 일을 하고 있습니다다. 역서로 『손에 잡히는 R 프로그래밍』(한빛미디어, 2015), 『파이썬과 대스크를 활용한 고성능 데이터 분석』(한빛미디어, 2020), 『데이터 과학을 위한 통계(2판)』(한빛미디어, 2021)가 있습니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169216043