logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

AutoML 인 액션

AutoML 인 액션

(AutoKeras 창시자가 안내하는, AutoKeras와 KerasTuner로 머신러닝 파이프라인 최적화하기)

칭취안 송, 하이펑 진, 시아 후 (지은이), 박찬성 (옮긴이)
한빛미디어
34,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
30,600원 -10% 0원
1,700원
28,900원 >
30,600원 -10% 0원
0원
30,600원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 27,200원 -10% 1360원 23,120원 >

책 이미지

AutoML 인 액션
eBook 미리보기

책 정보

· 제목 : AutoML 인 액션 (AutoKeras 창시자가 안내하는, AutoKeras와 KerasTuner로 머신러닝 파이프라인 최적화하기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791169211468
· 쪽수 : 408쪽
· 출판일 : 2023-10-04

책 소개

AutoML의 기본 개념과 알고리즘, 도구를 소개하고, AutoML 도구를 활용하여 머신러닝 모델을 학습시키는 방법을 설명한다. 또한, 실제 사례를 통해 AutoML의 적용 방법을 보여주며, 머신러닝을 처음 접하는 독자도 쉽게 이해할 수 있도록 구성되어 있다.

목차

[PART 1 AutoML 기초]
CHAPTER 1 머신러닝을 AutoML로
1.1 AutoML에 대한 감 잡기
1.2 머신러닝 시작하기
1.3 AutoML: 자동화 속의 자동화

CHAPTER 2 ML 프로젝트의 엔드투엔드 파이프라인
2.1 엔드투엔드 파이프라인의 개요
2.2 문제 정의 및 데이터셋 조립
2.3 데이터 전처리
2.4 피처 엔지니어링
2.5 머신러닝 알고리즘의 선별
2.6 머신러닝 모델의 파인튜닝: 그리드 탐색

CHAPTER 3 딥러닝 요점 정리
3.1 딥러닝이란?
3.2 텐서플로와 케라스
3.3 다층 퍼셉트론을 사용한 캘리포니아 주택 가격 예측
3.4 합성곱 신경망을 활용한 손 글씨 숫자 분류
3.5 순환 신경망을 활용한 IMDB 리뷰 분류

[PART 2 실전 AutoML]
CHAPTER 4 자동화된 엔드투엔드 머신러닝 솔루션 생성
4.1 AutoML 도구 준비: AutoKeras
4.2 자동화된 이미지 분류
4.3 4개의 지도 학습에 대한 엔드투엔드 AutoML 솔루션
4.4 다중 입/출력 문제 다루기

CHAPTER 5 AutoML 파이프라인 생성을 통한 탐색 공간 조정
5.1 순차적 AutoML 파이프라인으로 작업하기
5.2 자동화된 하이퍼파라미터 튜닝을 위한 순차적 AutoML 파이프라인 만들기
5.3 하이퍼블록으로 자동화된 파이프라인 검색
5.4 그래프 구조의 AutoML 파이프라인 설계하기
5.5 사용자 정의 AutoML 블록 설계하기

CHAPTER 6 완전한 사용자 정의 탐색 공간을 가진 AutoML
6.1 계층별로 탐색 공간 사용자 정의하기
6.2 오토인코더 모델 튜닝하기
6.3 서로 다른 검색 기법으로 얕은 모델 튜닝하기
6.4 튜너의 사용자 정의를 통해 AutoML 과정 제어하기

[PART 3 AutoML의 고급 주제]
CHAPTER 7 AutoML 검색 기법의 사용자 정의
7.1 순차적 검색 기법
7.2 임의 검색 기법으로 시작하기
7.3 베이지안 최적화 검색 기법 사용자 정의하기
7.4 진화적 검색 기법을 사용자 정의하기

CHAPTER 8 AutoML의 규모 확장
8.1 대규모 데이터셋 다루기
8.2 다중 GPU로 병렬화하기
8.3 검색 속도를 높이는 전략

CHAPTER 9 마무리
9.1 주요 개념 되돌아보기
9.2 AutoML 도구 및 플랫폼
9.3 AutoML의 미래 과제
9.4 빠르게 변하는 분야에서 최신 상태 유지하기

부록 A 코드 실행을 위한 환경 설정
A.1 구글 코랩 시작하기
A.2 로컬 우분투 시스템에 주피터 노트북 환경 설정

부록 B 이미지, 텍스트, 정형 데이터 분류 예제
B.1 이미지 분류: 손 글씨 숫자 인식
B.2 텍스트 분류: 뉴스 그룹의 주제 분류하기
B.3 정형 데이터 분류: 타이타닉 생존자 식별하기

저자소개

칭취안 송 (지은이)    정보 더보기
링크드인 AI 파운데이션팀의 머신러닝 및 렐러번스 엔지니어. AutoKeras의 창시자 중 한명이기도 합니다. 텍사스 A&M 대학교에서 컴퓨터 공학 박사학위를 받았으며, 관심 연구 분야는 추천 시스템과 소셜 네트워크에서 AutoML, 동적 데이터 분석, 텐서 분해를 활용하는 것입니다. 그리고 지금까지 KDD, NeurIPS, TKDD 등 주요 데이터 마이닝 및 머신러닝 학회에서 논문을 발표했습니다.
펼치기
하이펑 진 (지은이)    정보 더보기
구글 케라스팀의 소프트웨어 엔지니어. AutoKeras의 창시자이자 KerasTuner 프로젝트의 리드 역할을 맡고 있습니다. 또한 케라스 및 텐서플로의 기여자이기도 합니다. 텍사스 A&M 대학교에서 컴퓨터 공학 박사학위를 받았으며, 관심 연구 분야는 머신러닝과 AutoML입니다.
펼치기
시아 후 (지은이)    정보 더보기
라이스 대학교의 컴퓨터 과학과의 부교수. NeurIPS, ICLR, KDD, WWW, IJCAI, AAAI를 비롯한 여러 학회에서 100편 이상의 논문을 발표했습니다. 그가 이끈 팀에서 개발한 AutoKeras는 깃허브에서 가장 많이 사용되는 자동화된 딥러닝 프로젝트가 되었습니다(8,000개 이상의 별과 1,000개 이상의 포크). 또한 그가 작업한 심층 협업 필터링, 이상 징후 감지, 지식 그래프는 각각 텐서플로 패키지, 애플의 상용 시스템, 빙 상용 시스템에 탑재되었습니다. 그가 쓴 논문들은 WWW, WSDM, ICDM 등 여러 곳에서 최우수 논문(후보)상을 받았으며, NSF CAREER상을 비롯해 ACM SIGKDD의 라이징 스타상을 받기도 했습니다. 그의 작업은 10,000번 이상 인용되었으며 WSDM 2020 컨퍼런스의 총괄 공동 의장을 역임하기도 했습니다.
펼치기
박찬성 (옮긴이)    정보 더보기
한국전자통신 연구원에서 네트워크 제어/관리/지능화 시스템을 구축하는 일을 하며, 컴퓨터에서 일어나는 전반적인 일에 관심이 많습니다. 특히 최근 몇 년간은 머신러닝 모델의 라이프사이클을 관리하고 머신러닝 시스템을 운영하는 MLOps와 더불어, 생성형 AI 모델을 튜닝하고 모델링하는 방법과 이를 운영하는 LLMOps 분야에도 많은 관심을 가지고 허깅 페이스 펠로(Hugging Face Fellow), 구글 디벨로퍼스 엑스퍼트(Google Developers Expert) 등 다양한 커뮤니티 활동을 병행하고 있습니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169217293