logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

AI 딥 다이브

AI 딥 다이브

(오차역전파부터 확산모델까지, 미래를 만드는 73가지 기술 이야기)

오카노하라 다이스케 (지은이), 정원창 (옮긴이)
한빛미디어
27,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
24,300원 -10% 0원
1,350원
22,950원 >
24,300원 -10% 0원
카드할인 10%
2,430원
21,870원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 21,600원 -10% 1080원 18,360원 >

책 이미지

AI 딥 다이브
eBook 미리보기

책 정보

· 제목 : AI 딥 다이브 (오차역전파부터 확산모델까지, 미래를 만드는 73가지 기술 이야기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 소프트웨어 공학
· ISBN : 9791169212717
· 쪽수 : 320쪽
· 출판일 : 2024-07-30

책 소개

딥러닝의 여명기부터 최근의 생성 AI에 이르기까지 주요 AI 기술의 흐름을 73개 주제로 나눠 설명하는 종합 해설서다. 특히 시간의 흐름에 따른 최신 AI 기술 트렌드를 포괄적이면서도 깊이 있게 통찰할 수 있다.

목차

[1부: 지능이란 무엇인가, 딥러닝이란 무엇인가]

1장: 인공지능의 원리 해명

_1.1 딥러닝 모델 학습이 잘 되는 이유
_1.2 매니폴드 가설: 현실 세계 데이터의 모델링 기법
_1.3 딥러닝이 일반화되는 이유
_1.4 독립 성분 분석: 정보 얽힘 풀기
_1.5 딥러닝 이론 해석, 신경망 미해결 문제 해명을 향한 진전
_1.6 과다 파라미터 표현 신경망과 복권 가설
_1.7 인과와 상관: 미지의 분포에 대한 일반화 가능성
_1.8 대칭성이 학습에 활용되는 방식
_1.9 머신러닝의 새로운 거듭제곱 법칙: 모델이 클수록 일반화 능력과 샘플 효율 향상
_1.10 강건한 모델의 과다 파라미터 표현 필요성

2장: 사람의 학습
_2.1 뇌의 오차 역전파 여부
_2.2 뇌의 학습 시스템

[2부: 학습 기법]

3장: 학습 기법

_3.1 학습의 엔진: 수리 최적화 Adagrad, RMSProp, Adam
_3.2 랜덤 푸리에 피처 함수: 규모가 큰 문제에도 커널 기법 적용 가능
_3.3 정규화: 일반화 능력 얻기
_3.4 오차 역전파 기법에 의한 기댓값 최대화
_3.5 오차 역전파를 사용하지 않는 학습 기법: Feedback Alignment, Synthetic Gradient, Target Prop
_3.6 연속 학습: 과거의 학습 결과를 잊지 않고 새로운 작업 학습
_3.7 예측 학습
_3.8 진화 전략
_3.9 메타 학습: 학습 방법을 학습하는 MAML과 뉴럴 프로세스
_3.10 음함수 미분: 경삿값 계산에서 계산 그래프를 워프
_3.11 비지도 표현 학습: 다른 뷰 간 상호 정보량 최대화
_3.12 지식 증류: 거대 모델의 지식 추출
_3.13 마스크 오토인코더: 이미지 인식에서 사전 학습 혁명의 가능성

4장: 강화 학습
_4.1 강화 학습: 피드백으로부터 최적 행동 획득
_4.2 월드 모델: 상상 속에서의 학습 가능성
_4.3 안전이 보장되는 강화 학습: 랴푸노프 함수로 제약을 만족시키는 폴리시 도출
_4.4 미래 예측에 기반한 플래닝, 학습화 시뮬레이터와 몬테카를로 트리 탐색
_4.5 오프라인 강화 학습: 데이터 주도형 학습

5장: 고속화, 저전력화, 인프라
_5.1 심층 신경망 학습의 고속화 가능성
_5.2 모바일향 신경망: 추론 시 전력 효율 향상 3가지 방안
_5.3 AI 연구의 뼈아픈 교훈
_5.4 MN-3/MN-Core: 세계 최고의 저소비전력 슈퍼컴퓨터

[3부: 모델과 아키텍처]

6장: 생성 모델

_6.1 적대적 생성 신경망: 신경망을 경합시켜 생성 모델 단련
_6.2 VW: 재귀 확률적 신경망에 의한 생성과 인식 수행
_6.3 Glow: 가역적 생성 모델, GAN보다 안정적으로 학습 가능한 가능도 기반 기법
_6.4 셀프 어텐션 메커니즘: 이미지 생성, 기계 번역 등 많은 문제에서 최고 정확도 달성
_6.5 연속 다이내믹스 표현 가능 신경망
_6.6 정규화 계층: 신경망 학습의 안정화, 고속화, 일반화
_6.7 에너지 기반 모델: 노이즈 복원을 통한 생성 모델 학습
_6.8 트랜스포머: 모든 작업의 표준 네트워크 아키텍처가 될 가능성
_6.9 이산화 생성 모델
_6.10 Perceiver: 다양한 입출력에 대응 가능한 신경망

7장: 기억의 얼개
_7.1 Fast Weight: 어텐션으로 단기 기억 실현
_7.2 미분 가능 신경 컴퓨터: 외부 기억을 갖춘 신경망

[4부: 애플리케이션]

8장: 이미지

_8.1 이미지 인식에서 높은 성과를 올린 CNN: 분류 오류가 매년 절반 가까이 감소
_8.2 GLOM:파싱 트리에 의한 이미지 인식의 실현 가능성

9장: 음성
_9.1 웨이브넷: 자연스러운 음성 및 음악 생성을 위한 신경망

10장: 공간생성/인식
_10.1 Generative Query Network: 이미지로부터 3차원 구조를 이해하여 생성
_10.2 자기 지도 학습에 의한 깊이와 자기 이동 추정
_10.3 3차원 형상 표현 기법
_10.4 이미지로부터 3차원 장면 이해: 국소 피처량 기반 이미지 매칭
_10.5 사람이나 동물의 공간 이해 메커니즘의 AI 활용 가능성
_10.6 Rotation Averaging: 빠르고 최적인 자세 추정 실현
_10.7 DROID-SLAM: 순차적 수정으로 환경에 대응
_10.8 NDF: 적은 지도 학습 데이터로 학습 가능한 물체나 3차원 환경의 동변 표현

11장: 언어
_11.1 seq2seq:텍스트에서 텍스트를 생성하는 신경망
_11.2 언어의 창발: 기계 간 커뮤니케이션 가능성
_11.3 자유로운 말로 로봇에게 지시
_11.4 BERT: 언어 이해의 사전 학습

12장: 제어
_12.1 확률적 제어: 부정확한 제어가 돕는 학습
_12.2 온라인 학습과 최적 제어, 미지의 노이즈에도 강건한 제어 기법

13장: 시뮬레이션
_13.1 AI에 의한 시뮬레이션의 진화
_13.2 시뮬레이션 기반 추론: 관측으로부터 귀납적 파라미터 추정
_13.3 딥러닝을 사용하는 물리 시뮬레이션 고속화
_13.4 매틀란티스: AI를 사용한 범용 원자 레벨 시뮬레이터

14장: 게임
_14.1 알파고: CNN과 강화 학습을 조합한 컴퓨터 바둑
_14.2 알파고 제로: 제로 베이스에서 학습하여 인간을 초월
_14.3 알파스타: 다양성이 있는 학습 환경에서 고도의 스킬 획득

15장: 바이오 생명 과학
_15.1 알파폴드: 50년간의 생명 과학 그랜드 챌린지 해결

16장: 로봇
_16.1 전자동 정리 로봇 시스템 개발. 고정밀도 객체 인식 기반 정리
_16.2 도메인 무작위화

참고 문헌
찾아보기

저자소개

오카노하라 다이스케 (지은이)    정보 더보기
도쿄 대학 대학원 정보이공학계연구과 컴퓨터과학 전공 정보이공학 박사. 2006년 Preferred Infrastructure를 공동 창업했고, 2014년 Preferred Networks를 공동 창업해 대표이사 겸 최고연구책임자를 맡고 있다. 공저 포함 12권의 AI 도서를 집필했고, 2023년 《확산 모델의 수학》(제이펍, 2024)으로 32회 오카와 출판상을 받았다.
펼치기
정원창 (옮긴이)    정보 더보기
전자공학과 전산학을 공부하고 국내외의 크고 작은 하드웨어와 소프트웨어 회사에서 경험을 쌓았다. 현재는 자연어 처리에 중점을 둔 머신러닝 엔지니어로 일하고 있다. 옮긴 책으로 《AI 딥 다이브》, 《인사이드 머신러닝 인터뷰》, 《개발자의 하루를 바꾸는 코파일럿 & 챗GPT》(이상 한빛미디어) 등이 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169218429