책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791169213295
· 쪽수 : 324쪽
· 출판일 : 2024-12-20
책 소개
목차
CHAPTER 1 GPT 모델과 챗GPT
_1.1 LLM 소개
__1.1.1 언어 모델과 자연어 처리의 기초 탐구
__1.1.2 트랜스포머 아키텍처와 LLM에서의 역할
__1.1.3 GPT 모델의 토큰화 및 예측 단계
__1.1.4 LLM과 비전 인식의 통합
_1.2 GPT-1부터 GPT-4o까지
__1.2.1 GPT-1
__1.2.2 GPT-2
__1.2.3 GPT-3
__1.2.4 GPT-3에서 인스트럭트GPT로
__1.2.5 GPT-3.5, 챗GPT, 코덱스
__1.2.6 GPT-4
__1.2.7 AI의 진화와 멀티모달리티
_1.3 LLM의 비즈니스 활용 사례
__1.3.1 비 마이 아이즈
__1.3.2 모건 스탠리
__1.3.3 칸 아카데미
__1.3.4 듀오링고
__1.3.5 야블
__1.3.6 웨이마크
__1.3.7 인월드 AI
_1.4 AI 할루시네이션
_1.5 GPT 모델 최적화
_1.6 정리
CHAPTER 2 오픈AI API
_2.1 필수 개념
_2.2 오픈AI API 가용 모델
__2.2.1 GPT 베이스 모델
__2.2.2 인스트럭트GPT(레거시)
__2.2.3 GPT-3.5
__2.2.4 GPT-4
_2.3 오픈AI 플레이그라운드로 GPT 모델 사용하기
_2.4 오픈AI 파이썬 라이브러리
__2.4.1 API 키 발급
__2.4.2 API 호출
_2.5 채팅 완성 모델
__2.5.1 채팅 완성 엔드포인트의 입력 옵션
__2.5.2 temperature와 top_p
__2.5.3 채팅 완성 엔드포인트의 출력 형식
__2.5.4 비전
__2.5.5 JSON 출력
_2.6 텍스트 완성 모델
__2.6.1 텍스트 완성 엔드포인트를 위한 입력 옵션
__2.6.2 텍스트 완성 엔드포인트의 출력 결과 형식
_2.7 고려 사항
__2.7.1 사용료와 토큰 한도
__2.7.2 정보 보안
_2.8 기타 오픈AI API 및 기능
__2.8.1 임베딩
__2.8.2 모더레이션 모델
__2.8.3 텍스트 음성 변환
__2.8.4 음성인식
__2.8.5 이미지 모델 API
_2.9 정리
CHAPTER 3 LLM 기반 애플리케이션 개발
_3.1 주의 사항
__3.1.1 API 키 관리
__3.1.2 보안과 데이터 개인 정보 보호
_3.2 소프트웨어 아키텍처 디자인 패턴
_3.3 LLM 기반 애플리케이션의 능력
__3.3.1 대화 능력
__3.3.2 언어 처리 능력
__3.3.3 인간-컴퓨터 상호작용 능력
__3.3.4 능력 결합
_3.4 프로젝트 예시
__3.4.1 프로젝트 1: 뉴스 생성 솔루션 구축
__3.4.2 프로젝트 2: 유튜브 동영상 요약
__3.4.3 프로젝트 3: <젤다의 전설> 챗봇
__3.4.4 프로젝트 4: 개인 어시스턴트
__3.4.5 프로젝트 5: 문서 정리
__3.4.6 프로젝트 6: 감정 분석
_3.5 비용 관리
_3.6 LLM 기반 애플리케이션의 취약점
__3.6.1 입출력 분석
__3.6.2 프롬프트 인젝션의 불가피성
_3.7 외부 API와 작업
__3.7.1 오류 및 예기치 않은 지연 문제 처리
__3.7.2 요청 제한
__3.7.3 응답성과 사용자 경험 향상
_3.8 정리
CHAPTER 4 GPT-4o 및 챗GPT 활용 고급 기법
_4.1 프롬프트 엔지니어링
__4.1.1 효과적인 프롬프트 설계
__4.1.2 단계별 사고
__4.1.3 퓨샷 러닝 구현
__4.1.4 사용자 피드백을 통한 반복적 개선
__4.1.5 프롬프트 개선
_4.2 파인 튜닝
__4.2.1 시작하기
__4.2.2 오픈AI API를 통한 파인 튜닝
__4.2.3 오픈AI 웹 인터페이스를 통한 파인 튜닝
__4.2.4 파인 튜닝을 활용한 애플리케이션
__4.2.5 파인 튜닝 예시
__4.2.6 파인 튜닝 비용
_4.3 RAG
__4.3.1 기본 RAG
__4.3.2 고급 RAG
__4.3.3 RAG의 한계
_4.4 전략 선택
__4.4.1 전략 비교
__4.4.2 평가
_4.5 LLM 기반 솔루션의 해결 과제
__4.5.1 프롬프트 민감도
__4.5.2 비결정성
__4.5.3 할루시네이션
_4.6 정리
CHAPTER 5 프레임워크로 LLM 기능 높이기
_5.1 랭체인
__5.1.1 랭체인 라이브러리
__5.1.2 동적 프롬프트
__5.1.3 에이전트와 도구
__5.1.4 메모리
__5.1.5 임베딩
_5.2 라마인덱스
__5.2.1 10줄 코드로 RAG 구현하기
__5.2.2 라마인덱스 원칙
__5.2.3 맞춤 설정
_5.3 GPTs
_5.4 어시스턴트 API
__5.4.1 어시스턴트 생성
__5.4.2 어시스턴트 API를 통한 대화 관리
__5.4.3 함수 호출
__5.4.4 오픈AI 웹 플랫폼의 어시스턴트
_5.5 정리
CHAPTER 6 마치며
_6.1 주요 내용
__6.1.1 GPT 모델
__6.1.2 오픈AI API
__6.1.3 기획과 설계
__6.1.4 LLM 기능 활용
__6.1.5 다양한 프레임워크 활용
_6.2 LLM 기반 애플리케이션 개발 과정
__6.2.1 1단계: 아이디어 구상
__6.2.2 2단계: 요구 사항 정의
__6.2.3 3단계: 프로토타입 제작
__6.2.4 4단계: 개선 및 반복
__6.2.5 5단계: 솔루션 완성도 검토
_6.3 정리
APPENDIX A GPT의 활용도를 높이는 도구
A.1 스트림릿
A.2 GPTs 작업 기능
APPENDIX B 오픈AI o1
B.1 챗GPT에서 o1 활용하기
APPENDIX C 용어 사전
C.1 주요 용어
C.2 도구, 라이브러리, 프레임워크