책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791191905212
· 쪽수 : 424쪽
· 출판일 : 2022-08-12
책 소개
목차
00장. 실습 환경 안내
__0.1 코랩 시작하기
__0.2 코랩 기초 사용 방법
__0.3 예제 코드 노트 복사하기
__0.4 실습에 사용할 데이터셋 준비하기
[1단계 : 딥러닝 입문하기]
01장. 딥러닝 한눈에 살펴보기
__1.1 머신러닝과 딥러닝
__1.2 지도 학습, 비지도 학습, 강화 학습
__1.3 왜 딥러닝에 파이토치인가?
__1.4 파이토치 권고 코딩 스타일
__1.5 딥러닝 문제 해결 프로세스
__1.6 딥러닝 문제 해결 체크리스트
__1.7 딥러닝에 필요한 최소한의 통계 개념
__1.8 직관적 분석에 유용한 시각화
__학습 마무리
__연습문제
02장. 인공 신경망 ANN 이해하기
__2.1 퍼셉트론
__2.2 다층 신경망으로 단층 신경망 한계 극복하기
__2.3 인공 신경망의 학습 확인해보기
__2.4 손실 함수로 올바른 가중치 찾기
__2.5 경사 하강법과 오차 역전파로 최적의 값 찾기
__2.6 활성화 함수로 기울기 소실 예방하기
__2.7 신경망 성능 비교하기
__학습 마무리
__연습문제
03장. 간단한 신경망 만들기
__3.1 사인 함수 예측하기
__3.2 보스턴 집값 예측하기 : 회귀 분석
__3.3 손글씨 분류하기 : 다중분류
__학습 마무리
__연습문제
[2단계 : 입문용 신경망 3총사 CNN, ResNet, RNN]
04장. 사진 분류하기 : CNN과 VGG
__4.1 이해하기 : CNN
__4.2 데이터 전처리하기
__4.3 CNN으로 이미지 분류하기
__4.4 전이 학습 모델 VGG로 분류하기
__학습 마무리
__연습문제
05장. 유행 따라가기 : ResNet 만들기
__5.1 이해하기 : ResNet
__5.2 이해하기 : 배치 정규화
__5.3 기본 블록 정의하기
__5.4 ResNet 모델 정의하기
__5.5 모델 학습하기
__5.6 모델 성능 평가하기
__학습 마무리
__연습문제
06장. 넷플릭스 주가 예측하기 : RNN으로 첫 시계열 학습
__6.1 이해하기 : RNN
__6.2 데이터 살펴보기
__6.3 학습용 데이터 만들기
__6.4 RNN 모델 정의하기
__6.5 모델 학습하기
__6.6 모델 성능 평가하기
__학습 마무리
__연습문제
[3단계 : 딥러닝으로 이미지 처리하기]
07장. 이미지 세그멘테이션 : U-Net
__7.1 이해하기 : U-Net
__7.2 데이터 살펴보기
__7.3 학습용 데이터 만들기
__7.4 U-Net 모델 정의하기
__7.5 모델 학습하기
__7.6 모델 성능 평가하기
__학습 마무리
__연습문제
08장. 이미지 노이즈 제거 : 오토인코더
__8.1 이해하기 : 이미지 노이즈
__8.2 이해하기 : 오토인코더
__8.3 데이터 살펴보기
__8.4 학습용 데이터 만들기
__8.5 인코더 모델 정의하기
__8.6 디코더 모델 정의하기
__8.7 CAE 모델 정의하기
__8.8 모델 학습하기
__8.9 모델 성능 평가하기
__학습 마무리
__연습문제
09장. 자동 채색 : Let there be color 모델
__9.1 이해하기 : Let there be color 모델 구조
__9.2 데이터 살펴보기
__9.3 학습용 데이터셋 만들기
__9.4 모델 정의하기 : 로 레벨 특징 추출기
__9.5 모델 정의하기 : 미들 레벨 특징 추출기
__9.6 모델 정의하기 : 글로벌 레벨 특징 추출기
__9.7 모델 정의하기 : 컬러라이제이션 신경망
__9.8 모델 정의하기 : 전체 모델
__9.9 모델 학습하기
__9.10 모델 성능 평가하기
__학습 마무리
__연습문제
[4단계 : 딥러닝으로 텍스트 처리하기]
10장. 글쓰는 인공지능 : LSTM 텍스트 생성
__10.1 이해하기 : 텍스트 생성
__10.2 이해하기 : LSTM
__10.3 데이터 살펴보기
__10.4 학습용 데이터 만들기
__10.5 LSTM 모델 정의하기
__10.6 학습하기
__10.7 모델 성능 평가하기
__학습 마무리
__연습문제
11장. 직접 만드는 번역기 : 어텐션 기계 번역
__11.1 이해하기 : Seq2Seq 모델
__11.2 이해하기 : 어텐션 메커니즘
__11.3 이해하기 : GRU
__11.4 데이터 살펴보기
__11.5 학습용 데이터 만들기
__11.6 인코더 정의하기
__11.7 디코더 정의하기
__11.8 어텐션 기계 번역기 학습하기
__11.9 모델 성능 평가하기
__학습 마무리
__연습문제
12장. 캡챠 텍스트 인식 : CRNN+GRU
__12.1 이해하기 : CRNN
__12.2 이해하기 : CTC 손실
__12.3 데이터 살펴보기
__12.4 학습용 데이터셋 만들기
__12.5 CRNN 모델 정의하기 : CNN
__12.6 CRNN 모델 정의하기 : 전체 모델
__12.7 모델 학습하기
__12.8 모델 성능 평가하기
__학습 마무리
__연습문제
[5단계 : GAN으로 생성 모델 만들기]
13장. 사람 얼굴을 생성하는 GAN
__13.1 이해하기 : GAN
__13.2 이해하기 : 특징 공간
__13.3 데이터 살펴보기
__13.4 학습용 데이터셋 만들기
__13.5 GAN 생성자 정의하기
__13.6 GAN 감별자 정의하기
__13.7 가중치 초기화하기
__13.8 모델 학습하기
__13.9 모델 성능 평가하기
__학습 마무리
__연습문제
14장. 화질을 개선하는 GAN
__14.1 이해하기 : SRGAN
__14.2 학습용 데이터셋 만들기
__14.3 SRGAN 생성자 정의하기
__14.4 SRGAN 감별자 정의하기
__14.5 CNN 특징 추출기 정의하기
__14.6 모델 학습하기
__14.7 모델 성능 평가하기
__학습 마무리
__연습문제
15장. 데이터 없이 학습하는 GAN
__15.1 이해하기 : 모델 경량화
__15.2 이해하기 : GAN을 이용한 경량화
__15.3 교사 모델 학습하기
__15.4 GAN 생성자 정의하기
__15.5 학생 모델과 생성자 학습하기
__15.6 모델 성능 평가하기
__학습 마무리
__연습문제
부록 A. 트랜스포머 · GPT · BERT · ViT 알아보기
부록 B. 오차 역전파에서 가중치 업데이트 과정
부록 C. 윈도우 · 맥OS · 우분투에 개발 환경 구축하기