logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

현장에서 바로써먹는 데이터 분석 with 파이썬

현장에서 바로써먹는 데이터 분석 with 파이썬

김임용 (지은이)
심통
32,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
28,800원 -10% 0원
1,600원
27,200원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 알라딘 직접배송 1개 17,500원 >
알라딘 판매자 배송 14개 17,900원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 25,000원 -10% 1250원 21,250원 >

책 이미지

현장에서 바로써먹는 데이터 분석 with 파이썬
eBook 미리보기

책 정보

· 제목 : 현장에서 바로써먹는 데이터 분석 with 파이썬 
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791197529580
· 쪽수 : 400쪽
· 출판일 : 2022-06-30

책 소개

데이터 분석 현장 전문가가 데이터 분석 이론과 현장에서 필요한 파이썬 실무 활용법과 노하우를 설명한다. 데이터 분석에 대해 자세히 이해할 수 있도록 데이터 분석의 개념, 발달 과정, 분석 과정을 알아보고 파이썬의 기본 문법부터 활용법을 배운다.

목차

Chapter 1 데이터 분석의 이해
1 데이터란?
1-1 데이터의 정의
1-2 데이터 → 정보 → 지식 → 지혜
1-3 빅데이터의 등장
1-4 빅데이터가 만들어 내는 변화
1-5 빅데이터의 활용
1-6 빅데이터와 인공지능
2 데이터 분석이란?
2-1 데이터 과학? 데이터 분석? 데이터 마이닝?
2-2 데이터 분석가와 데이터 과학자
2-3 도메인 지식
3. 데이터 분석의 발달 과정
3-1 통계학의 등장
3-2 사람들이 통계를 어려워하는 이유
3-3 컴퓨터의 등장과 인공지능
3-4 인공지능, 머신러닝 그리고 딥 러닝
4. 데이터 분석 과정
4-1 데이터 분석의 결과물
4-2 데이터 분석 과정
5. 데이터 분석 가이드 맵
[핵심요약]
[연습문제]

Chapter 2. 데이터 분석을 위한 준비
1. 데이터 수집
1-1 데이터 수집 방법
1-2 데이터베이스에서의 데이터 수집 방법–SQL
1-3 웹에서의 데이터 수집 방법–웹 크롤링
1-4 API에서의 데이터 수집 방법
2. 데이터 셋 준비 시 주의해야 할 점
2-1 분석에 적합한 데이터 형태
2-2 이항 데이터
2-3 범주형 데이터를 수치화시키는 방법–One–Hot Encoding
3. 아나콘다 설치하기
3-1 파이썬이란?
3-2 파이썬의 특징
3-3 파이썬을 배울까요? R을 배울까요?
3-4 아나콘다 설치하기(Windows 기반)
4. 주피터 노트북
4-1 주피터 노트북이란?
4-2 기본 사용법
4-3 주석과 마크다운
4-4 메뉴별 주요 기능
5. 패키지 설치하기
5-1 패키지란?
5-2 패키지 설치하기 - 인터넷 연결 환경
5-3 패키지 설치하기 - Off-Line 환경
5-4 패키지 사용하기
6. 구글 코랩
[핵심요약]
[연습문제]

CHAPTER 3 데이터 다루기
1. 파이썬 문법에 대한 이해
1-1 파이썬 문법 체계
1-2 변수
1-3 함수
1-4 조건문
1-5 반복문
1-6 자료형
2. pandas의 데이터 프레임
2-1 데이터 프레임이란?
2-2 데이터 프레임 다루기
3. numpy의 다차원 배열
3-1 다차원 배열이란?
3-2 다차원 배열 다루기
4. 데이터 정제
4-1 결측치(NaN)
4-2 이상치(Outlier)
4-3 스케일링(Scaling)
[핵심요약]
[연습문제]
본격적인 실습에 앞서

chapter 4 통계분석과 기본 그래프
1. 어제까지 몇 마리의 병아리가 부화했을까? (기초 통계량)
1-1 데이터 불러오기
1-2 데이터 확인하기
1-3 기초 통계량 구하기
1-4 데이터 정렬하기
1-5 막대 그래프 그려보기
1-6 한글 폰트 지정 및 그래프 색상 바꿔보기
1-7 그래프 위에 텍스트 추가하기
1-8 그래프 위에 선 추가하기
1-9 파이 차트 그려보기
2. 부화한 병아리들의 몸무게는 얼마일까? (정규분포와 중심극한정리)
2-1 데이터 불러와서 구조와 유형 확인하기
2-2 통계량으로 분포 확인하기
2-3 히스토그램으로 분포 확인하기
2-4 상자그림으로 분포 확인하기
2-5 다중 그래프로 분포 확인하기
3. 사료 제조사별 성능 차이가 있을까? (가설검정)
3-1 데이터 불러와서 확인하기
3-2 상자그림으로 분포 비교하기
3-3 정규분포인지 검정하기
3-4 t-test로 두 집단 간 평균 검정하기
[핵심요약]
[연습문제]

chapter 5 상관분석과 회귀분석
1. 병아리의 성장에 영향을 미치는 인자는 무엇일까? (상관분석)
1-1 상관분석이란?
1-2 데이터 불러와서 확인하기
1-3 상관분석을 위한 별도 데이터 셋 만들기
1-4 상관분석 실시
1-5 상관분석 결과 표현하기
2. 병아리의 몸무게를 예측할 수 있을까? (회귀분석)
2-1 회귀분석이란?
2-2 단순 선형 회귀분석
2-3 다중 회귀분석
2-4 다중공선성
2-5 비선형 회귀분석
[핵심요약]
[연습문제]

chapter 6 분류 및 군집분석
1. 병아리의 성별을 구분할 수 있을까? (로지스틱 회귀)
1-1 로지스틱 회귀란?
1-2 데이터 불러와서 확인하기
1-3 로지스틱 회귀분석
1-4 분류 알고리즘의 성능 평가 방법
1-5 로지스틱 회귀모델의 성능 평가
2. 병아리의 품종을 구분할 수 있을까? (분류 알고리즘)
2-1 다양한 분류 알고리즘
2-2 나이브 베이즈 분류
2-3 k-최근접 이웃
2-4 의사결정나무
2-5 배깅
2-6 부스팅
2-7 랜덤 포레스트
2-8 서포트 벡터 머신
2-9 XGBoost와 하이퍼 파라미터 튜닝
2-10 분류 알고리즘 결과 정리
3. 효과적인 사육을 위해 사육환경을 분리해 보자! (군집 알고리즘)
3-1 군집 알고리즘
3-2 k-평균 군집
[핵심요약]
[연습문제]

chapter 7 인공신경망과 딥 러닝
1. 성장한 닭의 몸무게를 예측할 수 있을까? (회귀)
1-1 인공신경망이란?
1-2 데이터 및 상관관계 확인
1-3 데이터 분할
1-4 신경망 구현
1-5 회귀모델의 성능 평가
1-6 딥 러닝이란?
1-7 H2O 활용 딥 러닝 구현(회귀)
2. 딥 러닝을 이용해 병아리 품종을 다시 구분해 보자! (분류)
2-1 Keras 활용 딥 러닝 구현(분류)
2-2 과적합을 줄이는 방법(드롭아웃)
[핵심요약]
[연습문제]

chapter 8 텍스트 마이닝
1. 고객 리뷰에서 어떻게 핵심을 파악할 수 있을까? (워드 클라우드)
1-1 워드 클라우드란?
1-2 JDK 설치하기
1-3 패키지 설치하기
1-4 텍스트 데이터 가공하기
1-5 워드 클라우드 그리기
2. 고객들은 정말로 만족했을까? (감성 분석)
2-1 감성 분석이란?
2-2 감성 사전 준비
2-3 텍스트 데이터 가공하기
2-4 감성 분석
2-5 결과 시각화
[핵심요약]
[연습문제]

chapter 9 참고할 만한 내용들
1. 데이터베이스 연결 및 SQL 사용법
1-1 데이터베이스 연결 방법
1-2 데이터베이스 테이블의 데이터 조회(Select)
1-3 데이터베이스 테이블의 데이터 입력(Insert)
1-4 데이터베이스 테이블의 데이터 삭제(Delete)
2. 비대칭 데이터
2-1 비대칭 데이터란?
2-2 언더 샘플링
2-3 오버 샘플링
3. 차원 축소와 주성분 분석(PCA)
3-1 차원 축소란?
3-2 주성분 분석(PCA)
4. 데이터 프레임 집계 및 병합
4-1 데이터 프레임 집계
4-2 데이터 프레임 병합
5. 학습을 위한 대표적인 데이터 셋 소개
5-1 패키지 내장 데이터 셋
5-2 학습용 데이터 셋 취득
6. 데이터 분석 학습 사이트 소개
6-1 생활코딩
6-2 데이터 사이언스 스쿨
6-3 코세라
6-4 캐글
연습문제 정답

저자소개

김임용 (지은이)    정보 더보기
데이터로 밥 먹고 산지 10년이 넘었습니다. 대학에서 산업공학을 전공하고, 동국제강에서 통계를 기반한 데이터 분석 업무를 담당하며 생산성 향상, 품질 부적합 예방, 원가절감 등 수익성 개선을 위한 다양한 업무를 수행했습니다. 이후 오퍼레이션 컨설팅 회사로 옮겨 타국에 위치한 국내 대기업 공장의 수익성 향상을 위한 컨설팅 업무도 경험했습니다. 이러한 경험을 바탕으로 현재는 발전 공기업인 한국동서발전에서 데이터 과학자로 근무하고 있습니다. 다양한 데이터 분석 방법론을 실제 현장에 적용해 문제를 해결하고, 새로운 가치를 창출하는 업무를 수행하고 있습니다. 뿐만 아니라 데이터 기반 의사결정 문화 확산을 위해 데이터 분석 강의 및 컨설팅 업무도 함께하고 있습니다. 세상에 정답은 없지만 데이터를 이용해 보다 나은 선택은 할 수 있다고 생각합니다.
펼치기

책속에서

구글(Google)의 번역 서비스는 날이 갈수록 뛰어난 성능을 보이고 있습니다. 수억 건의 데이터를 이용한 인공 신경망 기반 번역 기술 개발의 결과입니다. 테슬라는 고객의 운전 데이터를 클라우드로 보내 기계학습을 시킨 뒤 차량의 소프트웨어를 지속적으로 업데이트하며 자율주행의 수준을 날로 향상시켜 가고 있습니다. 쿠팡(Coupang)은 말해주지 않아도 사야 할 제품들을 알아서 보여줍니다. 세상을 변화시키고 있는 이런 일들은 모두 데이터에서 비롯되었고, 데이터를 잘 분석해서 활용했기에 가능한 일입니다.
이 책은 정답 없는 세상의 문제들 속에서 여러분이 감성과 직관에 기반한 의사결정이 아닌 주어진 데이터를 정확히 해석해 보다 나은 의사결정을 할 수 있도록 하는 데 도움을 드리고자 합니다. 뿐만 아니라 데이터를 통해 세상을 보는 시야가 넓어지고, 그 안에서 새로운 가치를 창출할 수 있는 능력을 기르는 데 도움이 되고자 합니다.
이를 위해 제가 오랫동안 고민한 내용들을 현실에 와닿는 예제와 쉬운 설명으로 여러분께서 데이터 분석 분야를 처음 공부하시는 데 시행착오를 최대한 덜 겪게 만들고자 노력했습니다. 물론, 이 책 한 권을 공부했다고 해서 바로 데이터 분석가가 되었다고 말할 수는 없습니다. 다만, 데이터 분석에 대한 방향은 정립될 수 있다고 생각합니다.

-머리말 중에서




이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791197973093