logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory (Hardcover, 7)

James E. Humphreys (지은이)
Springer Verlag
109,870원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
90,090원 -18% 0원
4,510원
85,580원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Introduction to Lie Algebras and Representation Theory
eBook 미리보기

책 정보

· 제목 : Introduction to Lie Algebras and Representation Theory (Hardcover, 7) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 대수학 > 추상대수학
· ISBN : 9780387900537
· 쪽수 : 173쪽
· 출판일 : 1973-01-23

목차

'I. Basic Concepts.- 1. Definitions and first examples.- 1.1 The notion of Lie algebra.- 1.2 Linear Lie algebras.- 1.3 Lie algebras of derivations.- 1.4 Abstract Lie algebras.- 2. Ideals and homomorphisms.- 2.1 Ideals.- 2.2 Homomorphisms and representations.- 2.3 Automorphisms.- 3. Solvable and nilpotent Lie algebras.- 3.1 Solvability.- 3.2 Nilpotency.- 3.3 Proof of Engel's Theorem.- II. Semisimple Lie Algebras.- 4. Theorems of Lie and Cartan.- 4.1 Lie's Theorem.- 4.2 Jordan-Chevalley decomposition.- 4.3 Cartan's Criterion.- 5. Killing form.- 5.1 Criterion for semisimplicity.- 5.2 Simple ideals of L.- 5.3 Inner derivations.- 5.4 Abstract Jordan decomposition.- 6. Complete reducibility of representations.- 6.1 Modules.- 6.2 Casimir element of a representation.- 6.3 Weyl's Theorem.- 6.4 Preservation of Jordan decomposition.- 7. Representations of sl (2, F).- 7.1 Weights and maximal vectors.- 7.2 Classification of irreducible modules.- 8. Root space decomposition.- 8.1 Maximal toral subalgebras and roots.- 8.2 Centralizer of H.- 8.3 Orthogonality properties.- 8.4 Integrality properties.- 8.5 Rationality properties Summary.- III. Root Systems.- 9. Axiomatics.- 9.1 Reflections in a euclidean space.- 9.2 Root systems.- 9.3 Examples.- 9.4 Pairs of roots.- 10. Simple roots and Weyl group.- 10.1 Bases and Weyl chambers.- 10.2 Lemmas on simple roots.- 10.3 The Weyl group.- 10.4 Irreducible root systems.- 11. Classification.- 11.1 Cartan matrix of ?.- 11.2 Coxeter graphs and Dynkin diagrams.- 11.3 Irreducible components.- 11.4 Classification theorem.- 12. Construction of root systems and automorphisms.- 12.1 Construction of types A-G.- 12.2 Automorphisms of ?.- 13. Abstract theory of weights.- 13.1 Weights.- 13.2 Dominant weights.- 13.3 The weight ?.- 13.4 Saturated sets of weights.- IV. Isomorphism and Conjugacy Theorems.- 14. Isomorphism theorem.- 14.1 Reduction to the simple case.- 14.2 Isomorphism theorem.- 14.3 Automorphisms.- 15. Cartan subalgebras.- 15.1 Decomposition of L relative to ad x.- 15.2 Engel subalgebras.- 15.3 Cartan subalgebras.- 15.4 Functorial properties.- 16. Conjugacy theorems.- 16.1 The group g (L).- 16.2 Conjugacy of CSA's (solvable case).- 16.3 Borel subalgebras.- 16.4 Conjugacy of Borel subalgebras.- 16.5 Automorphism groups.- V. Existence Theorem.- 17. Universal enveloping algebras.- 17.1 Tensor and symmetric algebras.- 17.2 Construction of U(L).- 17.3 PBW Theorem and consequences.- 17.4 Proof of PBW Theorem.- 17.5 Free Lie algebras.- 17. Generators and relations.- 17.1 Relations satisfied by L.- 17.2 Consequences of (S1)-(S3).- 17.3 Serre's Theorem.- 17.4 Application: Existence and uniqueness theorems.- 18. The simple algebras.- 18.1 Criterion for semisimplicity.- 18.2 The classical algebras.- 18.3 The algebra G2.- VI. Representation Theory.- 20. Weights and maximal vectors.- 20.1 Weight spaces.- 20.2 Standard cyclic modules.- 20.3 Existence and uniqueness theorems.- 21. Finite dimensional modules.- 21.1 Necessary condition for finite dimension.- 21.2 Sufficient condition for finite dimension.- 21.3 Weight strings and weight diagrams.- 21.4 Generators and relations for V(?).- 22. Multiplicity formula.- 22.1 A universal Casimir element.- 22.2 Traces on weight spaces.- 22.3 Freudenthal's formula.- 22.4 Examples.- 22.5 Formal characters.- 23. Characters.- 23.1 Invariant polynomial functions.- 23.2 Standard cyclic modules and characters.- 23.3 Harish-Chandra's Theorem.- 24. Formulas of Weyl, Kostant, and Steinberg.- 24.1 Some functions on H .- 24.2 Kostant's multiplicity formula.- 24.3 Weyl's formulas.- 24.4 Steinberg's formula.- VII. Chevalley Algebras and Groups.- 25. Chevalley basis of L.- 25.1 Pairs of roots.- 25.2 Existence of a Chevalley basis.- 25.3 Uniqueness questions.- 25.4 Reduction modulo a prime.- 25.5 Construction of Chevalley groups (adjoint type).- 26. Kostant's Theorem.- 26.1 A combinatorial lemma.-

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책