logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

The New Book of Prime Number Records

The New Book of Prime Number Records (Hardcover, 3, 1996)

Paulo Ribenboim (지은이)
Springer Verlag
214,970원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
176,270원 -18% 0원
8,820원
167,450원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

The New Book of Prime Number Records
eBook 미리보기

책 정보

· 제목 : The New Book of Prime Number Records (Hardcover, 3, 1996) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 정수론
· ISBN : 9780387944579
· 쪽수 : 541쪽
· 출판일 : 1996-02-02

목차

1 How Many Prime Numbers Are There?.- I. Euclid’s Proof.- II. Goldbach Did It Too!.- III. Euler’s Proof.- IV. Thue’s Proof.- V. Three Forgotten Proofs.- A. Perott’s Proof.- B. Auric’s Proof.- C. Metrod’s Proof.- VI. Washington’s Proof.- VII. Furstenberg’s Proof.- VIII. Euclidean Sequences.- IX. Generation of Infinite Sequences of Pairwise Relatively Prime Integers.- 2 How to Recognize Whether a Natural Number Is a Prime.- I. The Sieve of Eratosthenes.- II. Some Fundamental Theorems on Congruences.- A. Fermat’s Little Theorem and Primitive Roots Modulo a Prime.- B. The Theorem of Wilson.- C. The Properties of Giuga, Wolstenholme, and Mann and Shanks.- D. The Power of a Prime Dividing a Factorial.- E. The Chinese Remainder Theorem.- F. Euler’s Function.- G. Sequences of Binomials.- H. Quadratic Residues.- III. Classical Primality Tests Based on Congruences.- IV. Lucas Sequences.- V. Primality Tests Based on Lucas Sequences.- VI. Fermat Numbers.- VII. Mersenne Numbers.- VIII. Pseudoprimes.- A. Pseudoprimes in Base 2 (psp).- B. Pseudoprimes in Base a (psp(a)).- C. Euler Pseudoprimes in Base a (epsp(a)).- D. Strong Pseudoprimes in Base a (spsp(a)).- E. Somer Pseudoprimes.- IX. Carmichael Numbers.- X. Lucas Pseudoprimes.- A. Fibonacci Pseudoprimes.- B. Lucas Pseudoprimes (lpsp(P, Q)).- C. Euler-Lucas Pseudoprimes (elpsp(P, Q)) and Strong Lucas Pseudoprimes (slpsp(P, Q)).- D. Somer-Lucas Pseudoprimes.- E. Carmichael-Lucas Numbers.- XL Primality Testing and Large Primes.- A. The Cost of Testing.- B. More Primality Tests.- C. Primality Certification.- D. Fast Generation of Large Primes.- E. Titanic Primes.- F. Curious Primes.- XII. Factorization and Public Key Cryptography.- A. Factorization of Large Composite Integers.- B. Public Key Cryptography.- 3 Are There Functions Defining Prime Numbers?.- I. Functions Satisfying Condition (a).- II. Functions Satisfying Condition (b).- III. Functions Satisfying Condition (c).- IV. Prime-Producing Polynomials.- A. Surveying the Problems.- B. Polynomials with Many Initial Prime Absolute Values.- C. The Prime-Producing Polynomials Races.- D. Primes of the Form m2 + 1.- 4 How Are the Prime Numbers Distributed?.- I. The Growth of ?(x).- A. History Unfolding.- B. Sums Involving the Mobius Function.- C. Tables of Primes.- D. The Exact Value of ?(x) and Comparison with x/(log x), Li(x), and R(x).- E. The Nontrivial Zeros of ?(s).- F. Zero-Free Regions for ?(s) and the Error Term in the Prime Number Theorem.- G. The Growth of ?(s).- H. Some Properties of ?(x).- II. The n th Prime and Gaps.- A. The n th Prime.- B. Gaps Between Primes.- Interlude.- III. Twin Primes.- Addendum on k-Tuples of Primes.- IV. Primes in Arithmetic Progression.- A. There Are Infinitely Many!.- B. The Smallest Prime in an Arithmetic Progression.- C. Strings of Primes in Arithmetic Progression.- V. Primes in Special Sequences.- VI. Goldbach’s Famous Conjecture.- VII. The Waring-Goldbach Problem.- A. Waring’s Problem.- B. The Waring-Goldbach Problem.- VIII. The Distribution of Pseudoprimes, Carmichael Numbers, and Values of Euler’s Function.- A. Distribution of Pseudoprimes.- B. Distribution of Carmichael Numbers.- C. Distribution of Lucas Pseudoprimes.- D. Distribution of Elliptic Pseudoprimes.- E. Distribution of Values of Euler’s Function.- 5 Which Special Kinds of Primes Have Been Considered?.- I. Regular Primes.- II. Sophie Germain Primes.- III. Wieferich Primes.- IV. Wilson Primes.- V. Repunits and Similar Numbers.- VI. Primes with Given Initial and Final Digits.- VII. Numbers k×2n±1.- VIII. Primes and Second-Order Linear Recurrence Sequences.- IX. The NSW Primes.- 6 Heuristic and Probabilistic Results about Prime Numbers.- I. Prime Values of Linear Polynomials.- II. Prime Values of Polynomials of Arbitrary Degree.- III. Polynomials with Many Successive Composite Values.- IV. Partitio Numerorum.- V. Some Probabilistic Estimates.- A. Distribution of Mersenne Primes.- B. The log log Philosophy.- VI. The Density of the Set of Regular Primes.- Conclusion.- The Pages That Couldn’t Wait.- Primes up to 10,000.- Index of Tables.- Index of Names.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책