logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Kernel Smoothing

Kernel Smoothing (Hardcover, Softcover Repri)

M. P. Wand, M. C. Jones (지은이)
Chapman & Hall
427,500원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
350,550원 -18% 0원
17,530원
333,020원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Kernel Smoothing
eBook 미리보기

책 정보

· 제목 : Kernel Smoothing (Hardcover, Softcover Repri) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780412552700
· 쪽수 : 224쪽
· 출판일 : 1994-12-01

목차

Preface Introduction Introduction Density estimation and histograms About this book Options for reading this book Bibliographical notes Univariate kernel density estimation Introduction The univariate kernel density estimator The MSE and MISE criteria Order and asymptotic notation; Taylor expansion Order and asymptotic notation Taylor expansion Asymptotic MSE and MISE approximations Exact MISE calculations Canonical kernels and optimal kernel theory Higher-older kernels Measuring how difficult a density is to estimate Modifications of the kernel density estimations Local kernel density estimators Variable kernel density estimators Transformation kernel density estimators Density estimation at boundaries Density derivative estimation Bibliographical notes Exercises Bandwidth selection Introduction Quick and simple bandwidth selectors Normal scale rules Oversmoothed bandwidth selection rules Least squares cross-validation Biased cross-validation Estimation of density functionals Plug-in bandwidth selection Direct plug in rules Solve-the-equation rules Smoothed cross-validation bandwidth selection Comparison of bandwidth selection Theoretical performance Practical advice Bibliographical notes Exercises Multivariate kernel density estimation Introduction The multivariate kernel density estimator Asymptotic MISE approximations Exact MISE calculations Choice of multivariate kernel Choice of smoothing parametrisation Bandwidth selection Bibliographical notes Exercises Kernel regression Introduction Local polynomial kernel estimators Asymptotic MSE approximations: linear case Fixed equally spaced design Random design Asymptotic MSE approximations: general case Behaviour near the boundary Comparison with other kernel estimators Asymptotic comparison Effective kernels Derivative estimation Bandwidth selection Multivariate nonparametric regression Bibliographical notes Exercises Selected extra topics Introduction Kernel density estimation in other settings Dependent data Length biased data Right-censored data Data measured with error Hazard function estimation Spectral density estimation Likelihood-based regression models Intensity function estimation Bibliographical notes Exercises Appendixes A Notation B Tables C Facts about normal densities C.1 Univariate normal densities C.2 Multivariate normal densities C.3 Bibliographical notes D Computation of kernel estimators D.1 Introduction D.2 The binned kernel density estimator D.3 Computation of kernel functional estimates D.4 Computation of kernel regression estimates D.5 Extension to multivariate kernel smoothing D.6 Computing practicalities D.7 Bibliographical notes References Index

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책