logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Global Sensitivity Analysis

Global Sensitivity Analysis (Hardcover)

Andrea Saltelli (지은이)
Wiley-Interscience
237,760원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
178,320원 -25% 0원
5,350원
172,970원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Global Sensitivity Analysis
eBook 미리보기

책 정보

· 제목 : Global Sensitivity Analysis (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9780470059975
· 쪽수 : 304쪽
· 출판일 : 2008-03-01

목차

Preface.

1. Introduction to Sensitivity Analysi.

1.1 Models and Sensitivity Analysis.

1.1.1 Definition.

1.1.2 Models.

1.1.3 Models and Uncertainty.

1.1.4 How to Set Up Uncertainty and Sensitivity Analyses.

1.1.5 Implications for Model Quality.

1.2 Methods and Settings for Sensitivity Analysis - An Introduction.

1.2.1 Local versus Global.

1.2.2 A Test Model.

1.2.3 Scatterplots versus Derivatives.

1.2.4 Sigma-normalized Derivatives.

1.2.5 Monte Carlo and Linear Regression.

1.2.6 Conditional Variances - First Path.

1.2.7 Conditional Variances - Second Path.

1.2.8 Application to Model (1.3).

1.2.9 A First Setting: 'Factor Prioritization'

1.2.10 Nonadditive Models.

1.2.11 Higher-order Sensitivity Indices.

1.2.12 Total Effects.

1.2.13 A Second Setting: 'Factor Fixing'.

1.2.14 Rationale for Sensitivity Analysis.

1.2.15 Treating Sets.

1.2.16 Further Methods.

1.2.17 Elementary Effect Test.

1.2.18 Monte Carlo Filtering.

1.3 Nonindependent Input Factors.

1.4 Possible Pitfalls for a Sensitivity Analysis.

1.5 Concluding Remarks.

1.6 Exercises.

1.7 Answers.

1.8 Additional Exercises.

1.9 Solutions to Additional Exercises.

2. Experimental Designs.

2.1 Introduction.

2.2 Dependency on a Single Parameter.

2.3 Sensitivity Analysis of a Single Parameter.

2.3.1 Random Values.

2.3.2 Stratified Sampling.

2.3.3 Mean and Variance Estimates for Stratified Sampling.

2.4 Sensitivity Analysis of Multiple Parameters.

2.4.1 Linear Models.

2.4.2 One-at-a-time (OAT) Sampling.

2.4.3 Limits on the Number of Influential Parameters.

2.4.4 Fractional Factorial Sampling.

2.4.5 Latin Hypercube Sampling.

2.4.6 Multivariate Stratified Sampling.

2.4.7 Quasi-random Sampling with Low-discrepancy Sequences.

2.5 Group Sampling.

2.6 Exercises.

2.7 Exercise Solutions.

3. Elementary Effects Method.

3.1 Introduction.

3.2 The Elementary Effects Method.

3.3 The Sampling Strategy and its Optimization.

3.4 The Computation of the Sensitivity Measures.

3.5 Working with Groups.

3.6 The EE Method Step by Step.

3.7 Conclusions.

3.8 Exercises.

3.9 Solutions.

4. Variance-based Methods.

4.1 Different Tests for Different Settings.

4.2 Why Variance?

4.3 Variance-based Methods. A Brief History.

4.4 Interaction Effects.

4.5 Total Effects.

4.6 How to Compute the Sensitivity Indices.

4.7 FAST and Random Balance Designs.

4.8 Putting the Method to Work: the Infection Dynamics Model.

4.9 Caveats.

4.10 Exercises.

5. Factor Mapping and Metamodelling.

5.1 Introduction.

5.2 Monte Carlo Filtering (MCF).

5.2.1 Implementation of Monte Carlo Filtering.

5.2.2 Pros and Cons.

5.2.3 Exercises.

5.2.4 Solutions.

5.2.5 Examples.

5.3 Metamodelling and the High-Dimensional Model Representation.

5.3.1 Estimating HDMRs and Metamodels.

5.3.2 A Simple Example.

5.3.3 Another Simple Example.

5.3.4 Exercises.

5.3.5 Solutions to Exercises.

5.4 Conclusions.

6. Sensitivity Analysis: from Theory to Practice.

6.1 Example 1: a Composite Indicator.

6.1.1 Setting the Problem.

6.1.2 A Composite Indicator Measuring Countries’ Performance in Environmental Sustainability.

6.1.3 Selecting the Sensitivity Analysis Method.

6.1.4 The Sensitivity Analysis Experiment and its Results.

6.1.5 Conclusions.

6.2 Example 2: Importance of Jumps in Pricing Options.

6.2.1 Setting the Problem.

6.2.2 The Heston Stochastic Volatility Model with Jumps.

6.2.3 Selecting a Suitable Sensitivity Analysis Method.

6.2.4 The Sensitivity Analysis Experiment.

6.2.5 Conclusions.

6.3 Example 3: a Chemical Reactor.

6.3.1 Setting the Problem.

6.3.2 Thermal Runaway Analysis of a Batch Reactor.

6.3.3 Selecting the Sensitivity Analysis Method.

6.3.4 The Sensitivity Analysis Experiment and its Results.

6.3.5 Conclusions.

6.4 Example 4: a Mixed Uncertainty-Sensitivity Plot.

6.4.1 In Brief.

6.5 When to use What?

Afterword.

Bibliography.

Index.

저자소개

Andrea Saltelli (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책