책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 미분기하학
· ISBN : 9780521658881
· 쪽수 : 468쪽
· 출판일 : 1999-06-03
목차
Part I. Complex Singularities: 1. Singularities arising from lattice polytopes K. Altmann; 2. Critical points of affine multiforms on the complement of arrangements J. N. Damon; 3. Strange duality, mirror symmetry and the Leech lattice W. Ebeling; 4. Geometry of equisingular families of curves G.-M. Greuel and E. Shustin; 5. Arrangements, KZ systems and Lie algebra homology E. J. N. Looijenga; 6. The signature of f(x,y) +zN A. Nemethi; 7. Spectra of K-unimodal isolated singularities of complete intersections J. M. Steenbrink; 8. Dynkin graphs, Gabrielov graphs and triangle singularities T. Urabe; Part II. Stratifications and Equisingularity Theory: 9. Differential forms on singular varieties and cyclic homology J. P. Brasselet and Y. Legrand; 10. Continuous controlled vector fields A. A. du Plessis; 11. Finiteness of Mather's canonical stratification A. A. du Plessis; 12. Trends in equisingularity theory T. J. Gaffney and D. Massey; 13. Regularity at infinity of real and complex polynomial maps M. Tibar; Part III. Global Singularity Theory: 14. A Bennequin number estimate for transverse knots V. V. Goryunov and J. W. Hill; 15. Abelian covers of the projective plane A. Libgober; 16. Elimination of singularities: Thom polynomials and beyond O. Saeki and K. Sukuma; Part IV. Singularities of Mappings: 17. An introduction to the image-computing spectral sequence K. A. Houston; 18. On the classification and geometry of Corank 1 map-germs from 3-space to 4-space K. A. Houston and N. P. Kirk; 19. Multiplicities of zero-schemes in quasi-homogeneous Corank-1 singularities W. L. Marar, J. A. Montaldi and M. A. S. Ruas; 20. Butterflies and umbilics of stable perturbations of analytic map-germs C5,0 → C4,0 T. Fukui; Part V. Applications of Singularity Theory: 21. Singular phenomena in kinematics P. S. Donelan and C. G. Gibson; 22. Singularities of developable surfaces G. Ishikawa; 23. Singularities of solutions for first order partial differential equations S. Izumiya.