logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Screw Theory in Robotics : An Illustrated and Practicable Introduction to Modern Mechanics

Screw Theory in Robotics : An Illustrated and Practicable Introduction to Modern Mechanics (Hardcover)

Jose M. Pardos-Gotor (지은이)
CRC Press
273,120원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
223,950원 -18% 0원
11,200원
212,750원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Screw Theory in Robotics : An Illustrated and Practicable Introduction to Modern Mechanics
eBook 미리보기

책 정보

· 제목 : Screw Theory in Robotics : An Illustrated and Practicable Introduction to Modern Mechanics (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 기하학 일반
· ISBN : 9781032107363
· 쪽수 : 310쪽
· 출판일 : 2021-11-24

목차

Preface Acknowledgments List of Acronyms and Abbreviations 1. Introduction 1.1 Motivation 1.2 About this Book 1.3 Preview 1.4 Audience 1.5 Further Reading 2. Mathematical Tools 2.1 Rigid Body Motion 2.2 Homogeneous Representation 2.2.1 Exercise: Homogeneous Rotation 2.2.2 Exercise: Homogeneous Rotation plus Translation 2.3 Exponential Representation 2.3.1 Exercise: Exponential Rotation 2.3.2 Exercise: Exponential Rotation plus Translation 2.4 Summary 3. Forward Kinematics 3.1 Problem Statement in Robotics 3.2 Denavit-Hartenberg Convention 3.2.1 Puma robots (e.g., ABB IRB120) 3.3 Product of Exponentials Formulation 3.3.1 General Solution to Forward Kinematics 3.3.2 Puma robots (e.g., ABB IRB120) 3.3.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 3.3.4 Bending backwards robots (e.g., ABB IRB1600) 3.3.5 Gantry robots (e.g., ABB IRB6620LX) 3.3.6 Scara robots (e.g., ABB IRB910SC) 3.3.7 Collaborative robots (e.g., UNIVERSAL UR16e) 3.3.8 Redundant robots (e.g., KUKA IIWA) 3.3.9 Many DoF robots (e.g., RH0 UC3M Humanoid) 3.4 Summary 4. Inverse Kinematics 4.1 Problem Statement in Robotics and Analytical Difficulty 4.2 Numeric vs. Geometric Solutions 4.2.1 Puma robot Inverse Kinematics algorithms 4.3 Canonical subproblems for Inverse Kinematics 4.3.1 Paden-Kahan subproblem One (PK1) ? one rotation 4.3.2 Paden-Kahan subproblem Two (PK2) ? two crossing rotations 4.3.3 Paden-Kahan subproblem Three (PK3) ? rotation to a distance 4.3.4 Pardos-Gotor subproblem One (PG1) ? one translation 4.3.5 Pardos-Gotor subproblem Two (PG2) ? two crossing translations 4.3.6 Pardos-Gotor subproblem Three (PG3) ? translation to a distance 4.3.7 Pardos-Gotor subproblem Four (PG4) ? two parallel rotations 4.3.8 Pardos-Gotor subproblem Five (PG5) ? rotation of a line or plane 4.3.9 Pardos-Gotor subproblem Six (PG6) ? two skewed rotations 4.3.10 Pardos-Gotor subproblem Seven (PG7) ? three rotations to a point 4.3.11 Pardos-Gotor subproblem Eight (PG8) ? three rotations to a pose 4.4 Product of Exponentials Approach 4.4.1 General Solution to Inverse Kinematics 4.4.2 Puma robots (e.g., ABB IRB120) 4.4.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 4.4.4 Bending backwards robots (e.g., ABB IRB1600) 4.4.5 Gantry robots (e.g., ABB IRB6620LX) 4.4.6 Scara robots (e.g., ABB IRB910SC) 4.4.7 Collaborative robots (e.g., UNIVERSAL UR16e) 4.4.8 Redundant robots (e.g., KUKA IIWA) 4.4.9 Many DoF robots (e.g., RH0 UC3M Humanoid) 4.5 Summary 5. Differential Kinematics 5.1 Problem Statement in Robotics 5.2 The Analytic Jacobian 5.2.1 Scara robot (e.g., ABB IRB910SC) 5.2.2 Puma robot (e.g., ABB IRB120) 5.3 The Geometric Jacobian 5.3.1 General solution to Differential Kinematics 5.3.2 Puma robots (e.g., ABB IRB120) 5.3.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 5.3.4 Bending backwards robots (e.g., ABB IRB1600) 5.3.5 Gantry robots (e.g., ABB IRB6620LX) 5.3.6 Scara robots (e.g., ABB IRB910SC) 5.3.7 Collaborative robots (e.g., UNIVERSAL UR16e) 5.3.8 Redundant robots (e.g., KUKA IIWA) 5.4 Summary 6. Inverse Dynamics 6.1 Problem Statement in Robotics 6.2 The Lagrange Characterization 6.2.1 General Non-recursive Solution to Inverse Dynamics 6.2.2 Puma robots (e.g., ABB IRB120) 6.2.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 6.2 4 Bending backwards robots (e.g., ABB IRB1600) 6.2.5 Gantry robots (e.g., ABB IRB6620LX) 6.2.6 Scara robots (e.g., ABB IRB910SC) 6.2.7 Collaborative robots (e.g., UNIVERSAL UR16e) 6.2.8 Redundant robots (e.g., KUKA IIWA) 6.3 Robot Dynamics Control 6.4 Spatial Vector Algebra 6.5 The Newton-Euler Equations 6.5.1 General Recursive Solution to Inverse Dynamics RNEA with POE 6.5.2 Puma robots (e.g., ABB IRB120) 6.5.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 6.5 4 Bending backwards robots (e.g., ABB IRB1600) 6.5.5 Gantry robots (e.g., ABB IRB6620LX) 6.5.6 Scara robots (e.g., ABB IRB910SC) 6.5.7 Collaborative robots (e.g., UNIVERSAL UR16e) 6.5.8 Redundant robots (e.g., KUKA IIWA) 6.6 Summary 7. Trajectory Generation 7.1 Concepts and Definitions 7.2 Trajectory Planning 7.2.1 General Solution to Trajectory Generation 7.2.2 Puma robots (e.g., ABB IRB120) 7.2.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 7.2 4 Bending backwards robots (e.g., ABB IRB1600) 7.2.5 Gantry robots (e.g., ABB IRB6620LX) 7.2.6 Scara robots (e.g., ABB IRB910SC) 7.2.7 Collaborative robots (e.g., UNIVERSAL UR16e) 7.2.8 Redundant robots (e.g., KUKA IIWA) 7.3 Summary 8. Robotics Simulation 8.1 Robotics Simulation 8.2 Screw Theory Toolbox for Robotics (ST24R) 8.3 Forward Kinematics Simulations 8.3.1 General Solution to Forward Kinematics Simulation 8.3.2 Puma robots (e.g., ABB IRB120) 8.3.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 8.3 4 Bending backwards robots (e.g., ABB IRB1600) 8.3.5 Gantry robots (e.g., ABB IRB6620LX) 8.3.6 Scara robots (e.g., ABB IRB910SC) 8.3.7 Collaborative robots (e.g., UNIVERSAL UR16e) 8.3.8 Redundant robots (e.g., KUKA IIWA) 8.4 Inverse Kinematics Simulations 8.4.1 General Solution to Inverse Kinematics Simulation 8.4.2 Puma robots (e.g., ABB IRB120) 8.4.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 8.4 4 Bending backwards robots (e.g., ABB IRB1600) 8.4.5 Gantry robots (e.g., ABB IRB6620LX) 8.4.6 Scara robots (e.g., ABB IRB910SC) 8.4.7 Collaborative robots (e.g., UNIVERSAL UR16e) 8.4.8 Redundant robots (e.g., KUKA IIWA) 8.5 Differential Kinematics Simulations 8.5.1 General Solution to Differential Kinematics Simulation 8.3.2 Puma robots (e.g., ABB IRB120) 8.5.3 Puma robots(e.g., ABB IRB120) "Tool-Up" 8.5.4 Bending backwards robots (e.g., ABB IRB1600) 8.5.5 Gantry robots (e.g., ABB IRB6620LX) 8.5.6 Scara robots (e.g., ABB IRB910SC) 8.5.7 Collaborative robots (e.g., UNIVERSAL UR16e) 8.5.8 Redundant robots (e.g., KUKA IIWA) 8.6 Inverse Dynamics Simulations 8.6.1 General Solution to Inverse Dynamics Simulation 8.6.2 Puma robots (e.g., ABB IRB120) 8.6.3 Puma robots (e.g., ABB IRB120) "Tool-Up" 8.6 4 Bending backwards robots (e.g., ABB IRB1600) 8.6.5 Gantry robots (e.g., ABB IRB6620LX) 8.6.6 Scara robots (e.g., ABB IRB910SC) 8.6.7 Collaborative robots (e.g., UNIVERSAL UR16e) 8.6.8 Redundant robots (e.g., KUKA IIWA) 8.7 Summary 9. Conclusions 9.1 Summary 9.1.1 Introduction 9.1.2 Mathematical Tools 9.1.3 Forward Kinematics 9.1.4 Inverse Kinematics 9.1.5 Differential Kinematics 9.1.6 Inverse Dynamics 9.1.7 Trajectory Generation 9.1.8 Robotics Simulation 9.2 Future Prospects Bibliography & References Epilogue

저자소개

Jose M. Pardos-Gotor (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책