logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Dynamic Simulation of Sodium Cooled Fast Reactors

Dynamic Simulation of Sodium Cooled Fast Reactors (Paperback, 1)

G Vaidyanathan (지은이)
CRC Press
109,220원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
89,560원 -18% 0원
4,480원
85,080원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Dynamic Simulation of Sodium Cooled Fast Reactors
eBook 미리보기

책 정보

· 제목 : Dynamic Simulation of Sodium Cooled Fast Reactors (Paperback, 1) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9781032254371
· 쪽수 : 272쪽
· 출판일 : 2024-10-08

목차

Chapter 1   Introduction
1.1 General
1.2 Basics of Breeding
1.3 Uranium Utilization
1.4 Components of Fast Reactors
1.5 Overview of Fast Reactor Programs
1.6 Need for Dynamic Simulation
1.7 Design Basis
1.8 Plant Protection System
1.9 Sensors and Response Time
1.10 Scope of Dynamic Studies
1.11 Modelling Development
     References
     Assignment

 

Chapter 2   Description of Fast Reactors
2.1 Introduction
2.2 Fast Breeder Test Reactor (FBTR)
 2.2.1. Reactor Core
2.2.2 Reactor Assembly 
2.2.3. Sodium Systems
2.2.4 Decay Heat Removal
2.2.5 Generating Plant
2.2.6 Instrumentation and Control
2.2.7 Safety
2.3 Prototype Fast Breeder Reactor
2.3.1 Reactor Core
2.3.2 Reactor Assembly
2.3.3 Main Heat Transport System
2.3.4 Steam Water System
2.3.5 Instrumentation and control
2.3.6 Safety
2.4 Neutronic Characteristics of FNRs
2.5 Thermal-Hydraulic Characteristics of FNR
       References
       Assignment

 

Chapter 3 Reactor Heat Transfer
3.1 Introduction
3.2 Reactor Core
 3.2.1 Core Description
 3.2.2 Fuel Pin
 3.2.3 Subassembly
3.3 Coolant Selection
3.4 Control Material Selection
3.5 Structural Material Selection
3.6 Heat Generation
3.7 Reactivity Feedback
 3.7.1 Doppler Effect
 3.7.2 Sodium Density and Void Effects
        3.7.3 Fuel Axial Expansion Effect
        3.7.4 Structural Expansion
        3.7.5 Bowing
3.8 Decay Heat
3.9 Solution Methods
 3.9.1 Prompt Jump Approximation
 3.9.2 Runge Kutta Method
 3.9.3 Kaganove Method
 3.9.4 Comparison of different Methods
 3.9.5 Solution   Methodology
3.10 Heat Transfer in Primary System
 3.10.1 Core Thermal Model
 3.10.2 Fuel Restructuring 
        3.10.3 Gap Conductance
 3.10.4 Fuel Thermal Model
 3.10.5 Solution Technique
3.11 Determination of Peak Temperatures: Hot Spot Analysis
3.12 Core Thermal Model validation in FBTR and SUPER PHENIX
 3.13 Mixing of Coolant Streams in Upper Plenum
 3.13.1 Solution Technique 
3.14 Lower Plenum/Cold Pool
3.15 Grid Plate
3.16 Heat Transfer Correlations for Fuel Rod Bundle
     References
     Assignment

 

Chapter 4 IHX Thermal Model
4.1 Introduction
4.2 Experience in PHENIX
4.3 Thermal Model
4.4 Solution Techniques
 4.4.1 Nodal Heat Balance Scheme
 4.4.2 Finite Differencing Scheme
4.5 Choice of Numerical Scheme
 4.5.1 Nodal Heat Balance for Unbalanced Flows
 4.5.2 Modified Nodal Heat Balance Scheme (MNHB)
4.6 Heat Transfer Correlations
4.7 Validation
References
Assignment

 

Chapter 5 Thermal Model of Piping
5.1 Introduction
5.2 Thermal Model
5.3 Solution Methods
5.4 Comparison of Piping Models
References
Assignment

 

Chapter 6 Sodium Pump
6.1 Introduction
6.2 Electromagnetic Pumps
6.3 Centrifugal Pump
 6.3.1 Pump Hydraulic Model
 6.3.2 Pump Dynamic Model
 6.3.3     Pump Thermal Model
References
Assignment

 

Chapter 7 Transient Hydraulics Simulation
7.1Introduction
7.2Momentum Equations
7.3Free Level Equations
7.4Core Coolant Flow Distribution 
7.5IHX Pressure Drop Correlations
 7.5.1       Resistance Coefficient for Cross Flow
 7.5.2.  Resistance Coefficient for Axial Flow
7.6 Pump Characteristics
7.7 Computational Model
7.8 Validation Studies
7.9 Secondary Circuit Hydraulics
 7.9.1 Secondary Hydraulics Model
 7.9.2 Natural Convection Flow in Sodium-Validation Studies
References
Assignment

 

Chapter 8   Steam Generator
8.1 Introduction
8.2 Heat Transfer Mechanisms
8.3 Steam Generator Designs
    8.3.1. Conventional Fossil Fuelled Boilers
   8.3.1.1 Drum Type
   8.3.1.2 Once Through Steam Generators
    8.3.2 Sodium Heated Steam Generators
8.4 Thermodynamic Models
8.5 Mathematical Model
8.6 Heat Transfer Correlations
    8.6.1 Single Phase Liquid Region
    8.6.2 Nucleate Boiling
    8.6.3 Dry-Out
    8.6.4 Post Dry-Out
    8.6.5 Superheated Region
    8.6.6 Sodium Side Heat Transfer

8.7 Pressure Drop
8.8 Computational Model
    8.8.1Solution of Water /Steam Side Equations
    8.8.2 Solution of Sodium, Shell, And Tube Wall Equations
8.9 Steam Generator Model Validation
References
Assignment

 

Chapter 9   Computer Code Development
9.1 Introduction
9.2 Organization of DYNAM
9.3 Axisymmetric Code STITH-2D
9.4 Comparison of Predictions of DYANA-P And DYANA-HM
References

 


Chapter 10   Specifying Sodium Pumps Coast-Down Time
10.1 Introduction
10.2 Impact of Coast Down Time in Loop Type FNR
10.3 Impact of Coast Down Time in Pool Type FNR
10.4 Considerations for Deciding Flow Coast Down Time
10.5 Scram Threshold Vs Coast Down Time
     10.5.1. FHT Effect on Maximum Temperatures
     10.5.2 FHT to Avoid Scram for Short Power Failure
10.6 Secondary pump FHT
10.7 Primary FHT for Unprotected Loss of Flow
References
Assignment

Chapter 11   Plant Protection System
11.1 Introduction
11.2 Limiting Safety System Settings for FBTR
     11.2.1 Safety Signals and Settings
     11.2.2 Limiting Safety System Adequacy for FBTR
11.3 Limiting Safety System Settings for PFBR
    11.3.1 Design Basis Events
    11.3.2 Core Design Safety Limits
    11.3.3 Selection of Scram Parameters
11.4 Shutdown System
11.5 Event Analysis
References
Assignment

 


Chapter 12   Decay Heat Removal System
 12.1 Introduction
 12.2 Natural Convection Basics
 12.3 DHR System Options in FNR
    12.3.1 DHR in Primary Sodium
    12.3.2 DHR in Secondary Sodium
    12.3.3 Steam Generator Auxiliary Cooling System
    12.3.4 DHR Through Steam-Water System
    12.3.5 Reactor Vessel Auxiliary Cooling System
 12.4 DHR in FBTR
   12.4.1 Heat Removal By Air In SG Casing
   12.4.2 Loss of Offsite and Onsite Power with SG Air Cooling
   12.4.3 Loss Of Offsite And Onsite Power Without Reactor Trip
12.5 DHR in PFBR
   12.5.1 Thermal Model
   12.5.2 Decay Heat Exchanger (DHX) Model
   12.5.3 Hot Pool Model
   12.5.4 Air Heat Exchanger Model (AHX) Model
   12.5.5 Piping
   12.5.6 Expansion Tank
   12.5.7   Air Stack/Chimney
   12.5.8   Hydraulic Model
   12.5.9 DHDYN Validation on SADHANA Loop
12.6 Role of Inter Wrapper Flow
12.7 Role of Secondary thermal capacity
References
Assignment

 

Chapter 13 Modelling of Large Sodium-Water Reaction
13.1 Introduction
13.2 Leak Rate
  13.2.1 Water Leak Rate model
  13.2.2 Steam leak rate model
13.3 Reaction site dynamics
  13.3.1 Spherical bubble model
  13.3.2 Columnar bubble model
  13.3.3 Solution technique
  13.3.4 Validation of Reaction site model
13.4 Sodium Side System Transient
13.5 Discharge Circuit System Transient
13.6 Analysis of Pressure Transients for PFBR
13.7 Failure of a greater number of tubes than design basis leak
References
Assignment

 

 

저자소개

G Vaidyanathan (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책