logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Common Errors in Statistics 4e

Common Errors in Statistics 4e (Paperback, 4)

Phillip I. Good (지은이)
John Wiley & Sons Inc
125,040원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
93,780원 -25% 0원
2,820원
90,960원 >
59,000원 -52% 0원
카드할인 10%
5,900원
53,100원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Common Errors in Statistics 4e
eBook 미리보기

책 정보

· 제목 : Common Errors in Statistics 4e (Paperback, 4) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 확률과 통계 > 일반
· ISBN : 9781118294390
· 쪽수 : 352쪽
· 출판일 : 2012-07-23

목차

Preface xi

PART I FOUNDATIONS 1

1. Sources of Error 3
Prescription 4
Fundamental Concepts 5
Surveys and Long-Term Studies 9
Ad-Hoc, Post-Hoc Hypotheses 9
To Learn More 13

2. Hypotheses: The Why of Your Research 15
Prescription 15
What Is a Hypothesis? 16
How Precise Must a Hypothesis Be? 17
Found Data 18
Null or Nil Hypothesis 19
Neyman–Pearson Theory 20
Deduction and Induction 25
Losses 26
Decisions 27
To Learn More 28

3. Collecting Data 31
Preparation 31
Response Variables 32
Determining Sample Size 37
Fundamental Assumptions 46
Experimental Design 47
Four Guidelines 49
Are Experiments Really Necessary? 53
To Learn More 54

PART II STATISTICAL ANALYSIS 57

4. Data Quality Assessment 59
Objectives 60
Review the Sampling Design 60
Data Review 62
To Learn More 63

5. Estimation 65
Prevention 65
Desirable and Not-So-Desirable Estimators 68
Interval Estimates 72
Improved Results 77
Summary 78
To Learn More 78

6. Testing Hypotheses: Choosing a Test Statistic 79
First Steps 80
Test Assumptions 82
Binomial Trials 84
Categorical Data 85
Time-To-Event Data (Survival Analysis) 86
Comparing the Means of Two Sets of Measurements 90
Do Not Let Your Software Do Your Thinking For You 99
Comparing Variances 100
Comparing the Means of K Samples 105
Higher-Order Experimental Designs 108
Inferior Tests 113
Multiple Tests 114
Before You Draw Conclusions 115
Induction 116
Summary 117
To Learn More 117

7. Strengths and Limitations of Some Miscellaneous Statistical Procedures 119
Nonrandom Samples 119
Modern Statistical Methods 120
Bootstrap 121
Bayesian Methodology 123
Meta-Analysis 131
Permutation Tests 135
To Learn More 137

8. Reporting Your Results 139
Fundamentals 139
Descriptive Statistics 144
Ordinal Data 149
Tables 149
Standard Error 151
p-Values 155
Confidence Intervals 156
Recognizing and Reporting Biases 158
Reporting Power 160
Drawing Conclusions 160
Publishing Statistical Theory 162
A Slippery Slope 162
Summary 163
To Learn More 163

9. Interpreting Reports 165
With a Grain of Salt 165
The Authors 166
Cost–Benefit Analysis 167
The Samples 167
Aggregating Data 168
Experimental Design 168
Descriptive Statistics 169
The Analysis 169
Correlation and Regression 171
Graphics 171
Conclusions 172
Rates and Percentages 174
Interpreting Computer Printouts 175
Summary 178
To Learn More 178

10. Graphics 181
Is a Graph Really Necessary? 182
KISS 182
The Soccer Data 182
Five Rules for Avoiding Bad Graphics 183
One Rule for Correct Usage of Three-Dimensional Graphics 194
The Misunderstood and Maligned Pie Chart 196
Two Rules for Effective Display of Subgroup Information 198
Two Rules for Text Elements in Graphics 201
Multidimensional Displays 203
Choosing Effective Display Elements 209
Oral Presentations 209
Summary 210
To Learn More 211

PART III BUILDING A MODEL 213

11. Univariate Regression 215
Model Selection 215
Stratification 222
Further Considerations 226
Summary 233
To Learn More 234

12. Alternate Methods of Regression 237
Linear Versus Nonlinear Regression 238
Least-Absolute-Deviation Regression 238
Quantile Regression 243
Survival Analysis 245
The Ecological Fallacy 246
Nonsense Regression 248
Reporting the Results 248
Summary 248
To Learn More 249

13. Multivariable Regression 251
Caveats 251
Dynamic Models 256
Factor Analysis 256
Reporting Your Results 258
A Conjecture 260
Decision Trees 261
Building a Successful Model 264
To Learn More 265

14. Modeling Counts and Correlated Data 267
Counts 268
Binomial Outcomes 268
Common Sources of Error 269
Panel Data 270
Fixed- and Random-Effects Models 270
Population-Averaged Generalized Estimating Equation Models (GEEs) 271
Subject-Specific or Population-Averaged? 272
Variance Estimation 272
Quick Reference for Popular Panel Estimators 273
To Learn More 275

15. Validation 277
Objectives 277
Methods of Validation 278
Measures of Predictive Success 283
To Learn More 285

Glossary 287

Bibliography 291

Author Index 319

Subject Index 329

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책