logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Computer Processing of Remotely-Sensed Images

Computer Processing of Remotely-Sensed Images (Paperback, 5 ed)

Kula C. Misra (지은이)
John Wiley & Sons Inc
190,660원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
123,920원 -35% 0원
1,240원
122,680원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Computer Processing of Remotely-Sensed Images
eBook 미리보기

책 정보

· 제목 : Computer Processing of Remotely-Sensed Images (Paperback, 5 ed) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 지구과학 > 지구과학 일반
· ISBN : 9781119502821
· 쪽수 : 384쪽
· 출판일 : 2022-04-28

목차

Preface to the First Edition

Preface to the Second Edition

Preface to the Third Edition

Preface to the Fourth Edition

Preface to the Fifth Edition

List of Examples

Chapter 1: Remote Sensing: Basic Principles

1.1 Introduction

1.2 Electromagnetic radiation and its properties

1.2.1 Terminology

1.2.2 Nature of electromagnetic radiation

1.2.3 The electromagnetic spectrum

1.2.4 Sources of electromagnetic radiation

1.2.5 Interactions with the Earth's atmosphere

1.3 Interaction with Earth surface materials

1.3.1 Introduction

1.3.2 Spectral reflectance of Earth surface materials

1.3.2.1 Vegetation

1.3.2.2 Geology

1.3.2.3 Water bodies

1.3.2.4 Soils

1.4 Summary

References

Chapter 2: Remote Sensing Platforms and Sensors

2.1 Introduction

2.2 Characteristics of imaging remote sensing instruments

2.2.1 Spatial resolution

2.2.2 Spectral resolution

2.2.3 Radiometric resolution

2.3 Optical, near-infrared and thermal imaging sensors

2.3.1 Along-Track Scanning Radiometer (ATSR)

2.3.2 Advanced Very High Resolution Radiometer (AVHRR) and Visible Infrared Imager Radiometer Suite (VIIRS)

2.3.3 MODIS (MODerate Resolution Imaging Spectrometer)

2.3.4 Ocean observing instruments

2.3.5 IRS LISS

2.3.6 Landsat instruments

2.3.6.1 Landsat Multi-Spectral Scanner (MSS)

2.3.6.2 Landsat Thematic Mapper (TM)

2.3.6.3 Enhanced Thematic Mapper Plus (ETM+)

2.3.6.4 Landsat 8

2.3.6.5 Landsat 9

2.3.6.6 Landsat Next

2.3.7 SPOT sensors

2.3.7.1 SPOT High Resolution Visible (HRV)

2.3.7.2 Vegetation (VGT)

2.3.7.3 SPOT Follow-on Programme

2.3.8 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

2.3.9ESA Sentinel Programme

2.3.9.1 Sentinel-2 Multi-Spectral Imager (MSI)

2.3.9.2 Sentinel-3 OLCI and SLSTR

2.3.10 High-resolution commercial and small satellite systems

2.4 Microwave imaging sensors

2.4.1. European Space Agency Synthetic Aperture Spaceborne Radars

2.4.2 Radarsat

2.4.3 TerraSAR-X and COSMO-SkyMed

2.4.3 ALOS PALSAR

2.4.4 Sentinel-1 SAR

2.5 Summary

References

Chapter 3: Pre-Processing of Remotely Sensed Data

3.1 Introduction

3.2 Cosmetic operations

3.2.1 Missing scan lines

3.2.2 De-striping methods

3.2.2.1 Linear method

3.2.2.2 Histogram matching

3.2.2.3 Other de-striping methods

3.3 Geometric correction and registration

3.3.1 Orbital geometry model

3.3.2 Transformation based on ground control points

3.3.3 Resampling procedures

3.3.4 Image registration

3.3.5 Other geometric correction methods

3.4 Atmospheric correction

3.4.1 Background

3.4.2 Image-based methods

3.4.3 Radiative transfer models

3.4.4 Empirical line method

3.5 Illumination and view angle effects

3.6 Sensor calibration

3.7 Terrain effects

3.8 Summary

References

Chapter 4: Image Enhancement Techniques

4.1 Introduction

4.2 Human visual system

4.3 Contrast enhancement

4.3.1 Linear contrast stretch

4.3.2 Histogram equalisation

4.3.3 Gaussian stretch

4.4 Pseudocolour enhancement

4.4.1 Density slicing

4.4.2 Pseudocolour transform

4.5 Summary

References

Chapter 5: Image Transforms

5.1 Introduction

5.2 Arithmetic operations

5.2.1 Image addition

5.2.2 Image subtraction

5.2.3 Image multiplication

5.2.4 Image division and vegetation indices

5.3 Empirically based image transforms

5.3.1 Perpendicular Vegetation Index

5.3.2 Tasselled Cap (Kauth-Thomas) transformation

5.4 Principal Components Analysis

5.4.1 Standard Principal Components Analysis

5.4.2 Noise-adjusted Principal Components Analysis

5.4.3 Decorrelation stretch

5.5 Hue, Saturation and Intensity (HSI) transform

5.6 The Discrete Fourier Transform

5.6.1 Introduction

5.6.2 Two-dimensional Fourier transform

5.6.3 Applications of the Fourier transform

5.7 The Discrete Wavelet Transform

5.7.1 Introduction

5.7.2 The one-dimensional Discrete Wavelet Transform

5.7.3 The two-dimensional Discrete Wavelet Transform

5.8 Change Detection

5.8.1 Introduction

5.8.2 NDVI Difference Image

5.8.3 Principal Components Analysis

5.8.4 Canonical Correlation Change Analysis

5.8.5 Time Series Analysis

5.8.6 Summary

5.9 Image fusion

5.9.1 Introduction

5.9.2 Hue, Saturation and Intensity (HSI) algorithm.

5.9.3 Principal Components Analysis

5.9.4 Gram-Schmidt orthogonalisation

5.9.5 Wavelet based methods

5.9.6 Evaluation – Subjective methods

5.9.7 Evaluation  – Objective methods

5.10 Summary

References

Chapter 6: Filtering Techniques

6.1 Introduction

6.2 Spatial domain low-pass (smoothing) filters

6.2.1 Moving average filter

6.2.2 Median filter

6.2.3 Adaptive filters

6.3 Spatial domain high-pass (sharpening) filters

6.3.1 Image subtraction method

6.3.2 Derivative-based methods

6.4 Spatial domain edge detectors

6.5 Frequency domain filters

6.6 Summary

References

Chapter 7: Classification

7.1 Introduction

7.2 Geometrical basis of classification

7.3 Unsupervised classification

7.3.1 The k-means algorithm

7.3.2 ISODATA

7.3.3 A modified k-means algorithm

7.4 Supervised classification

7.4.1 Training samples

7.4.2 Statistical classifiers

7.4.2.1 Parallelepiped classifier

7.4.2.2 Centroid (k-means) classifier

7.4.2.3 Maximum likelihood method

7.4.3 Neural classifiers

7.5 Sub-pixel classification techniques

7.5.1 The linear mixture model

7.5.2 Spectral Angle Mapping

7.5.3 Independent Components Analysis

7.5.4 Fuzzy classifiers

7.6 More advanced approaches to image classification

7.6.1 Support Vector Machines

7.6.2 Decision tree classifiers

7.6.3 Other approaches to classification

7.6.3.1Rule based methods and the Genetic Algorithm

7.6.3.2Object-oriented methods

7.6.3.3Other methods

7.6.3.3.1Evidential Reasoning

7.6.3.3.2Bagging, boosting and ensembles of classifiers

7.7 Incorporation of non-spectral features

7.7.1 Texture

7.7.2 Use of external data

7.8 Contextual information

7.9 Feature selection

7.10 Classification accuracy

7.11 Summary

References

Chapter 8 Advanced Topics

8.1 Introduction

8.2 SAR interferometry

8.2.1 Basic principles

8.2.2 Interferometric processing

8.2.3 Problems in SAR interferometry

8.2.4 Applications of SAR interferometry

8.3 Imaging spectroscopy

8.3.1 Introduction

8.3.2 Processing imaging spectrometer data

8.3.2.1 Derivative analysis

8.3.2.2 Smoothing and denoising the reflectance spectrum

8.3.2.2.1 Savitzky-Golay polynomial smoothing

8.3.2.2.2 Denoising using the Discrete Wavelet Transform

8.3.2.3 Determination of ‘red edge’ characteristics of vegetation

8.3.2.4 Continuum removal

8.4 Lidar

8.4.1 Introduction

8.4.2 Lidar details

8.4.3 Lidar applications

8.5 Summary

References

Appendix A

Index 

저자소개

Kula C. Misra (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책