logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Micro-Optics and Energy: Sensors for Energy Devices

Micro-Optics and Energy: Sensors for Energy Devices (Hardcover, 2020)

J. Jacob, Bruno G. Pollet (엮은이)
Springer
329,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
269,780원 -18% 0원
13,490원
256,290원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Micro-Optics and Energy: Sensors for Energy Devices
eBook 미리보기

책 정보

· 제목 : Micro-Optics and Energy: Sensors for Energy Devices (Hardcover, 2020) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 화학 > 물리화학
· ISBN : 9783030436759
· 쪽수 : 207쪽
· 출판일 : 2020-06-12

목차

Preface          

Section 1: Optical Properties for Sensors

Chapter 1.1: Introduction to Optical Sensors        

Authors: Jacob J. Lamb, Odne S. Burheim, Bruno G. Pollet and Dag R. Hjelme

Dimensions of Electrochemical Energy Storage Devices

Electrical vs Optical Sensors

General Principles of Fibre Optic Sensor Systems

Sensor Integration

References

Chapter 1.2: Light Properties and Sensors

Authors: Markus S. Wahl, Rolf S. Kristian, Harald I. Muri, Jacob J. Lamb and Dag R. Hjelme

Light as Electromagnetic Waves

Mathematical Formalism

Interaction of Light with Materials

Dielectric Materials

Semiconductor Physics pn-Junction

Light Sources and Detection

Thermal Sources

Non-Thermal Sources

Photodetectors           

Spectral Resolution

Fibre Optic Waveguides

Intrinsic Fibre Optic Sensors 

Discrete Point Temperature Sensors

Distributed Temperature Sensors

Extrinsic Fibre Optic Sensors

Single Point RI or Chemical Optical Fibre Sensors   

References     

Section 2: Optical Sensor Measurements

Chapter 2.1: Temperature and Humidity Measurements

Authors: Markus S. Wahl, Harald I. Muri, Jacob J. Lamb, Rolf S. Kristian and Dag R. Hjelme

Humidity as a Measurable Parameter

Principle of Humidity Sensing

Traditional Optical Humidity Detection         

Miniaturised Humidity Sensors          

Current Optical Temperature Sensor Technologies   

Blackbody Radiation-Based Temperature Sensing    

Absorption-Based Temperature Sensing        

Polarimetric-Based Temperature Sensors     

Interferometer-Based Temperature Sensors   

Fibre Bragg Grating Temperature Sensors   

Some Challenges and Solutions for Optical Fibre-Based Sensing    

References     

Chapter 2.2: Hydrogen Gas Measurements          

Authors: Harald I. Muri, Jacob J. Lamb, Markus S. Wahl, Rolf K. Snilsberg and Dag R. Hjelme

Traditional Gas Optical Measurements          

Infrared Absorption    

Raman Scattering       

Raman- and IR-Based Optical Fibre Hydrogen Sensors       

Thin Film-Based Optical Fibre Hydrogen Sensors    

Measurement Principles         

Measurement Methods           

References     

Chapter 2.3: Sensor Fusion 

Authors: Harald I. Muri, Markus S. Wahl, Jacob J. Lamb, Rolf K. Snilsberg and Dag R. Hjelme

Principle of Sensor Fusion     

Sensor Fusion Possibilities     

Data Handling

References     

Section 3: Energy Production and Storage

Chapter 3.1: Hydrogen Fuel Cells and Water Electrolysers        

Authors: Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet

Introduction   

Hydrogen Production

Traditional Production           

Electrochemical Production   

Turning Hydrogen into Electricity     

Effects of Temperature and Humidity Within PEMFCs         

Distribution of Temperature and Humidity Within PEMFCs 

Research Needs and Measurement Challenges         

Possibilities for Micro Optical Technologies in PEMFCs      

References

Chapter 3.2: Ultrasound-Assisted Electrolytic Hydrogen Production

Authors: Md Hujjatul Islam, Jacob J. Lamb, Odne S. Burheim and Bruno G. Pollet

            Introduction

            Hydrogen Production Methods

            Sonoelectrochemical Production of Hydrogen

Effect of Ultrasound on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER)

Effect of Ultrasound on the Hydrogen Yield

Summary and Outlook

References

Chapter 3.3: Low Grade Waste Heat to Hydrogen

Authors: Yash D. Raka, Robert Bock, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Theoretical Background

Regeneration Process

            Thermodynamic Model of a RED Cell

            Pumping System Model

            Mass Balances

            Waste Heat Regeneration System

            Economic Model

            Scenario Study

            Results and Discussion

                        Feed Solution Concentration

                        Membrane Properties: Permselectivity and Membrane Resistance

                        Cell Geometry: Residence Time and Channel Thickness

Economic Analysis: Membrane cost, membrane lifetime and cost of waste heat

                        Economic Comparison: Capex and LCH

            Conclusion

            Refernces

Chapter 3.4: Liquid Air Energy Storage

Authors: Zhongxuan Liu, Federico Ustolin, Lena Spitthoff, Jacob J. Lamb, Tuls Gundersen, Bruno G. Pollet and Odne S. Burheim

            Introduction

                        Thermal Energy Storage

                        Electrical Energy Storage

            LAES Technologies

                        Simulation of the Process Concepts

                        Linde-Hampson Process

                        Claude Process

                        Kapitza Process

                        Modified Claude Process

            Results and Discussion

            Future Prospects

References

Chapter 3.5: Hydrogen and Biogas

Authors: Eline Gregorie, Jacob J. Lamb, Kristian M. Lien, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Biogas Reforming for Hydrogen Production

            Reforming Techniques for Hydrogen Production

                        Steam Reforming Process

                        Partial Oxidation Reforming Process

                        Autothermal Reforming Process

                        Dry Reforming Process

                        Dry Oxidation Reforming

            Hydrogen Purification Processes

                        Condenser Unit

                        Water-Gas Shift Reaction

                        Pressure Swing Adsorption

                        Membrane Reactors

            Biogas as Source for Reforming: The Influence of Impurities in Biogas

                        Hydrogen Sulfide

                        Oxygen

                        Siloxanes

            Example of Plant and Economic Analysis

            Energy Storage & Biogas Upgrading using Renewable Hydrogen

            Methanation and Biogas Upgrading

                        Catalytic Methanation

                        Biological Methanation

                        Methanation of Biogas and Comparison of Methanation Technologies

            Power-to-Biogas Process

                        Carbon Source

                        Electrolysers Consideration in the Case of PtG Chain

                        The Efficiency of the Process

                        Economic Consideration

            Conclusions

            References

Chapter 3.6: Lifetime Expectancy of Lithium-ion Batteries

Authors: Lena Spitthoff, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

            Introduction

            Terminology

                        Working Principle of a Lithium-ion Battery

                        Applications, Requirements and Problems

                        Second Life

                        Safety Concerns and Ageing

                        Definitions and Calculations

            Chemistries

                        Cathode Materials: LCO, LMO, NMC and LFP

                        Anode Materials: Hard Carbon and Graphite

                        Separator, Electrolyte and Additives

            Capacity Fading and Ageing Prospects

Cycling: Capacity Fade as a Function of Temperature, C Rate and SOC Window

Calendar Ageing: Capacity Fade as a Function of SOC and Temperature

                        Ageing and Mechanisms

                        Data Extraction Sensitivity

                        Comparison Justification

            Outlook

            References

Section 4: Micro-Optical Sensors in Energy Systems

Chapter 4.1: Thermal Management of Lithium Ion Batteries     

Authors: Lena Spitthoff, Eilif S. Øyre, Harald I. Muri, Markus S. Wahl, Astrid F. Gunnarshaug, Jacob J. Lamb, Bruno G. Pollet and Odne S. Burheim

Introduction   

System Description    

Importance of Thermal Management 

Calculating the Internal Heat Production      

Thermal Conductivity Measurement  

Determining Parameters Experimentally with Micro Optic Sensors 

Temperature Characterisation Requirements

Fibre Bragg Grating Sensor  

Temperature Gradient Ratio  

Experimental Setup    

Calibration     

Implementation of Sensors into a Li-Ion Pouch         

Conclusion     

References     

Chapter 4.2: Reverse Electrodialysis Cells

Authors: Kjersti W. Krakhella, Markus S. Wahl, Eilif S. Øyre, Jacob J. Lamb & and Odne S. Burheim

Introduction   

Salinity Gradient Energy Storage      

Electrodialytic Energy Storage System Principles     

Determining Parameters Experimentally with Micro Optic Sensors 

Sensor Design

Experimental Setup    

Calibration of Micro Sensors 

Implementation of Sensors into a Reverse Electrodialysis Cell          

Conclusion     

References     

Acknowledgements  

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책