logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Number Theory III: Diophantine Geometry

Number Theory III: Diophantine Geometry (Hardcover, 1991)

SERGE LANG (지은이)
Springer Verlag
207,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
170,120원 -18% 0원
8,510원
161,610원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Number Theory III: Diophantine Geometry
eBook 미리보기

책 정보

· 제목 : Number Theory III: Diophantine Geometry (Hardcover, 1991) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 정수론
· ISBN : 9783540530046
· 쪽수 : 296쪽
· 출판일 : 1991-06-27

목차

I Some Qualitative Diophantine Statements.- §1. Basic Geometric Notions.- §2. The Canonical Class and the Genus.- §3. The Special Set.- §4. Abelian Varieties.- §5. Algebraic Equivalence and the Neron-Severi Group.- §6. Subvarieties of Abelian and Semiabelian Varieties.- §7. Hilbert Irreducibility.- II Heights and Rational Points.- §1. The Height for Rational Numbers and Rational Functions.- §2. The Height in Finite Extensions.- §3. The Height on Varieties and Divisor Classes.- §4. Bound for the Height of Algebraic Points.- III Abelian Varieties.- §0. Basic Facts About Algebraic Families and Neron Models.- §1, The Height as a Quadratic Function.- §2. Algebraic Families of Heights.- §3. Torsion Points and the l-Adic Representations.- §4. Principal Homogeneous Spaces and Infinite Descents.- §5. The Birch-Swinnerton-Dyer Conjecture.- §6. The Case of Elliptic Curves Over Q.- IV Faltings’ Finiteness Theorems on Abelian Varieties and Curves.- §1. Torelli’s Theorem.- §2. The Shafarevich Conjecture.- §3. The l-Adic Representations and Semisimplicity.- §4. The Finiteness of Certain l-Adic Representations. Finiteness I Implies Finiteness II.- §5. The Faltings Height and Isogenies: Finiteness I.- §6. The Masser-Wustholz Approach to Finiteness I.- V Modular Curves Over Q.- §1. Basic Definitions.- §2. Mazur’s Theorems.- §3. Modular Elliptic Curves and Fermat’s Last Theorem.- §4. Application to Pythagorean Triples.- §5. Modular Elliptic Curves of Rank 1.- VI The Geometric Case of Mordell’s Conjecture.- §0. Basic Geometric Facts.- §1. The Function Field Case and Its Canonical Sheaf.- §2. Grauert’s Construction and Vojta’s Inequality.- §3. Parshin’s Method with (?;2x/y).- §4. Manin’s Method with Connections.- §5. Characteristic p and Voloch’s Theorem.- VII Arakelov Theory.- §1. Admissible Metrics Over C.- §2. Arakelov Intersections.- §3. Higher Dimensional Arakelov Theory.- VIII Diophantine Problems and Complex Geometry.- §1. Definitions of Hyperbolicity.- §2. Chern Form and Curvature.- §3. Parshin’s Hyperbolic Method.- §4. Hyperbolic Imbeddings and Noguchi’s Theorems.- §5. Nevanlinna Theory.- IX Weil Functions. Integral Points and Diophantine Approximations.- §1. Weil Functions and Heights.- §2. The Theorems of Roth and Schmidt.- §3. Integral Points.- §4. Vojta’s Conjectures.- §5. Connection with Hyperbolicity.- §6. From Thue-Siegel to Vojta and Faltings.- §7. Diophantine Approximation on Toruses.- X Existence of (Many) Rational Points.- §1. Forms in Many Variables.- §2. The Brauer Group of a Variety and Manin’s Obstruction.- §3. Local Specialization Principle.- §4. Anti-Canonical Varieties and Rational Points.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책