logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

파이썬으로 배우는 대규모 머신 러닝

파이썬으로 배우는 대규모 머신 러닝

(대규모 데이터 분석과 처리를 위한 다양한 머신 러닝 기법 활용)

바스티앙 스야딘, 루카 마싸론, 알베르토 보스체티 (지은이), 이미정 (옮긴이)
에이콘출판
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,500원 -10% 0원
1,750원
29,750원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

파이썬으로 배우는 대규모 머신 러닝
eBook 미리보기

책 정보

· 제목 : 파이썬으로 배우는 대규모 머신 러닝 (대규모 데이터 분석과 처리를 위한 다양한 머신 러닝 기법 활용)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 언어 > 파이썬
· ISBN : 9791161750224
· 쪽수 : 528쪽
· 출판일 : 2017-07-10

책 소개

파이썬을 활용해 대규모 데이터 세트에 머신 러닝을 적용하는 방법을 안내한다. 실제 파이썬 코드를 이용해 현재 가장 많이 사용되는 머신 러닝 기법들과 프레임워크로 대규모 데이터 세트를 처리하는 방법을 설명하고 있다.

목차

1장. 확장성을 향한 첫걸음

__확장성에 대한 자세한 설명
____대규모 객체 생성하기
____파이썬 소개
____파이썬을 통한 스케일 업
____파이썬을 통한 스케일 아웃
__대규모 머신 러닝을 위한 파이썬
____파이썬 2와 파이썬 3 중 어느 것을 선택할 것인가?
____파이썬 설치
____단계적 설치
____패키지 설치
____패키지 업그레이드
____과학용 배포판
____주피터 / IPython 소개
__파이썬 패키지
____NumPy
____SciPy
____Pandas
____Scikit-learn
__요약


2장. Scikit-learn으로 확장 가능한 학습
__코어에 구애 받지 않는 학습(Out-of-core learning)
____실행 가능한 방법으로서 재표본추출
____한 번에 하나의 객체만으로 최적화를 하는 방법
____코어에 구애 받지 않는(out-of-core) 학습 시스템 구축
__소스로부터 데이터를 스트리밍하기
____현실을 반영하는 데이터 세트
____첫 번째 예제 - 자전거 대여 데이터 세트 스트리밍하기
__확률적 학습(Stochastic learning)
____배치 경사 하강법(Batch gradient descent)
____확률적 경사 하강법
____Scikit-learn의 SGD 구현체
____SGD 학습 파라미터 정의하기
__데이터 스트림을 통한 특징 관리
____목표 설명
____해싱 기법
____그 외 기본적인 변환들
____스트림에서 테스트와 검증
____SGD의 실제 동작
__요약


3장. 빠른 SVM 구현체

__실험용 데이터 세트
____자전거 대여 데이터 세트
____산림 유형 데이터 세트
__서포트 벡터 머신
____경첩 손실 및 변형
____Scikit-learn SVM 구현체에 대한 이해
____재표본추출에 의한 비선형 SVM
____SGD로 SVM 확장하기
__정규화를 통한 특징 선택
__SGD에 비선형성 포함시키기
____명시적 고차원 매핑 시도하기
__하이퍼파라미터튜닝
____빠른 SVM 학습을 위한 방법들
__요약


4장. 신경망과 딥러닝

__신경망 아키텍처
____신경망이 학습하는 내용과 방법
____적합한 아키텍처 선택하기
__실제로 동작하는 신경망
____sknn 병렬 처리
__신경망과 정규화
__신경망과 하이퍼파리미터 최적화
__신경망과 결정 경계
__H2O를 통한 딥러닝의 확장
____H2O를 활용한 대규모 딥러닝
____H2O에서의 그리드 검색
__딥러닝과 비지도 사전 학습
__theanets를 활용한 딥러닝
__오토인코더와 비지도 학습
____오토인코더
__요약


5장. 텐서플로를 활용한 딥러닝

__텐서플로 설치
__SkFlow를 활용한 텐서플로에서의 머신 러닝
____대형 파일을 활용하는 딥러닝-점진적 학습
__Keras와 텐서플로 설치
____Keras를 통한 텐서플로에서의 합성곱 신경망
__합성곱층
____풀링층
____완전 연결층
__점진적 방식을 사용하는 CNNs
__GPU 컴퓨팅
__요약


6장. 분류와 회귀 트리 확장

__부트스트랩 모음
__랜덤 포레스트 및 극단적인 랜덤 포레스트
__무작위 검색을 통한 빠른 파라미터 최적화
____극단적인 랜덤 트리와 대형 데이터 세트
__CART와 부스팅
____경사 부스팅 머신
__XGBoost
____XGBoost 회귀
____대형 데이터 세트를 스트리밍하는 XGBoost
____XGBoost model persistence
__H2O를 통한 코어에 구애 받지 않는 방식의 CART
____H2O에서의 랜덤 포레스트와 그리드 검색
____H2O에서의 확률적 경사 부스팅과 그리드 검색
__요약


7장. 대규모 데이터에 대한 비지도 학습

__비지도 방식
__특징 분해(Feature decomposition) - PCA
____무작위 PCA
____증분 PCA
____희소 PCA
__H2O를 활용한 PCA
__클러스터링? K-평균
____초기화 방식
____K-평균의 가정
____최적의 K 선택하기
____K-평균의 확장-미니 배치
__H2O를 활용한 K-평균
__LDA
____LDA 확장 ? 메모리, CPUs, 머신
__요약


8장. 분산환경-하둡(Haddop)과 스파크(Spark)

__독립형 머신에서 다수의 노드들로
____분산 프레임워크가 필요한 이유
__VM 환경 설정
____버추얼박스
____베이그런트
____VM 사용하기
__하둡 생태계
____아키텍처
____HDFS
____맵리듀스
____얀
__스파크
____pySpark
__요약


9장. 스파크를 활용한 실무에서의 머신 러닝

__9장을 위한 VM 환경 설정
__클러스터 노드들에서 변수 공유하기
____읽기 전용 브로드캐스트 변수
____읽기 전용 누산기 변수
____브로드캐스트와 누산기를 함께 사용하기-예제
__스파크에서의 데이터 전처리
____JSON 파일과 스파크 데이터 프레임
____유실 데이터 처리하기
____메모리에서 테이블을 그룹짓고 생성하기
____전처리된 데이터 프레임 혹은 RDD를 디스크에 쓰기
____스파크 데이터 프레임으로 작업하기
__스파크를 활용한 머신 러닝
____KDD99 데이터 세트를 다루는 스파크
____데이터 세트 읽기
____특징 엔지니어링
____학습기 훈련시키기
____학습기 성능 평가하기
____강력한 ML 파이프라인
____수작업 튜닝
____교차 검증
__요약


부록. GPU 및 Theano 소개
__GPU 컴퓨팅
__Theano - GPU에서의 병렬 컴퓨팅
__Theano 설치하기

저자소개

알베르토 보세티 (지은이)    정보 더보기
신호 처리와 통계 분야의 전문 지식을 갖춘 데이터 과학자로, 통신공학 박사 학위를 가지고 있다. 현재 런던에서 거주하며 일하고 있다. 자연어 처리 및 머신 러닝부터 분산 처리에 이르기까지 수많은 프로젝트에서 다양한 일상 문제에 직면하고 있다. 자신의 일에 매우 열정적이며 항상 데이터 과학 기술의 개발, 모임, 회의 및 기타 이벤트에 대해 최신 정보를 얻으려고 노력한다.
펼치기
알베르토 보세티의 다른 책 >
루카 마사론 (지은이)    정보 더보기
10년 이상의 경력을 지닌 데이터 과학자로 데이터를 똑똑한 물건으로 변신시키거나 실제 문제를 해결하며 사업과 이해 관계자들에게 유용한 가치를 창조한다. 데이터 과학 대회에서 전세계 순위 7위에 오른 캐글 그랜드 마스터이자 머신러닝 분야의 구글 디벨로퍼 엑스퍼트(GDE)이다. AI, 머신러닝, 알고리즘 분야 베스트셀러 도서를 쓴 작가로 『실전활용! 텐서플로 딥러닝 프로젝트』(위키북스, 2018), 『파이썬으로 풀어보는 회귀분석』(에이콘, 2018) 등을 집필했다.
펼치기
바스티앙 스야딘 (지은이)    정보 더보기
인공지능 및 수학을 전공한 데이터 과학자이자 스타트업 창업자다. 레이던 대학(University of Leiden)에서 매사추세츠 공과대학(MIT) 캠퍼스 과정을 이수하고 인지 과학(cognitive science) 분야에서 석사학위를 취득했다. 지난 5년 동안 광범위한 데이터 과학 및 인공지능 프로젝트를 수행했다. 코세라(Coursera)에서 진행되는 미시간대학(University of Michigan) 소셜 네트워크 분석 과정과 존스홉킨스 대학교(Johns Hopkins University) 머신 러닝 과정의 TA를 담당하고 있다. 선호하는 프로그래밍 언어는 파이썬과 R이다. 현재 머신 러닝 및 인공지능 애플리케이션을 대규모로 제공하는 Quandbee(http://www.quandbee.com/)의 공동 창업자로 회사를 이끌고 있다.
펼치기
이미정 (옮긴이)    정보 더보기
성균관대 전자전기컴퓨터 공학부 학사학위를, 한동대 정보통신공학 석사학위를 이수했다. 삼성전자 LSI 기술개발실 엔지니어로 시작해 오라클 미들웨어 사업부 컨설턴트로, 현재는 Splunk Korea 세일즈 엔지니어로 활동하고 있다. 역서로 『Pig를 이용한 빅데이터 처리 패턴』(에이콘, 2014), 『Splunk 6 핵심기술』(에이콘, 2015), 『파이썬으로 배우는 대규모 머신러닝』(에이콘, 2017), 『Splunk 7 에센셜』(에이콘, 2019)이 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책