logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

파이썬으로 구현하는 고급 머신 러닝

파이썬으로 구현하는 고급 머신 러닝

(딥러닝을 포함한 최신 고급 머신 러닝 기술과 파이썬 활용)

존 하티 (지은이), 남궁영환 (옮긴이)
에이콘출판
33,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
29,700원 -10% 0원
1,650원
28,050원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

파이썬으로 구현하는 고급 머신 러닝
eBook 미리보기

책 정보

· 제목 : 파이썬으로 구현하는 고급 머신 러닝 (딥러닝을 포함한 최신 고급 머신 러닝 기술과 파이썬 활용)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791161750354
· 쪽수 : 376쪽
· 출판일 : 2017-08-17

책 소개

머신 러닝에서 폭넓게 사용되는 핵심 알고리즘을 비롯해 최근 각광받고 있는 다양한 딥러닝 관련 대표 알고리즘들을 설명한다. 이미지 분류 등에서 높은 성능 향상을 보인 컨볼루션 신경망 외에도 제한된 볼츠만 머신, 심층 신뢰망, SdA 등을 예제 데이터와 파이썬 코드를 이용해 직접 익힐 수 있다.

목차

1장. 비지도 머신 러닝
__주성분 분석(PCA)
____PCA: 기초
____PCA 활용
__K-평균 클러스터링
____클러스터링: 기초
____클러스터링 분석
____클러스터링 환경 변수 튜닝
__SOM(Self-organizing maps)
____SOM 알고리즘의 기초
____SOM 알고리즘 활용
__참고 문헌
__요약


2장. 심층 신뢰망(DBN)
__신경망: 기본 개념
____신경망의 구성
____네트워크 토폴로지
__제한된 볼츠만 머신(RBM)
____RBM의 소개
______토폴로지
______학습
____RBM 애플리케이션
____RBM 애플리케이션 추가 사항
__심층 신뢰망(DBN)
____DBN 학습
____DBN 애플리케이션
____DBN 검증
__참고 문헌
__요약


3장. SdA
__오토인코더
____오토인코더 소개
______토폴로지
______학습
____dA
____dA 응용
__SdA
____SdA 응용
____SdA 성능 평가
__참고 문헌
__요약


4장. 컨볼루션 신경망(CNN)
__CNN의 소개
____컨볼루션 신경망 토폴로지
______컨볼루션 레이어
______풀링 레이어
______convnet 학습
______종합 정리
____CNN의 응용
__참고 문헌
__요약


5장. 준지도 학습
__소개
__준지도 학습의 이해
__준지도 학습 알고리즘의 실제
____자가 학습
______자가 학습 구현
______자가 학습 구현에 대한 세부 조정
__CPLE
__참고 문헌
__요약


6장. 텍스트 피처 엔지니어링
__소개
__텍스트 피처 엔지니어링
____텍스트 데이터 정제
______BeautifulSoup을 이용한 텍스트 정제
______구두점과 토큰화 관리
______단어의 태깅 및 카테고리화
____텍스트 데이터에서 피처 생성
____어근 추출
____배깅과 랜덤 포레스트
____준비된 데이터의 테스팅
__참고 문헌
__요약


7장. 피처 엔지니어링 II
__소개
__피처 세트 생성
____머신 러닝 애플리케이션을 위한 피처 엔지니어링
______피처의 학습 정도 향상을 위한 리스케일링 기술의 이용
______도출된 변수의 효과적인 생성
______숫자가 아닌 피처의 재해석
____피처 셀렉션 기술의 이용
______피처 셀렉션 수행
__실제 문제에서 피처 엔지니어링
____RESTful API를 통한 데이터 확보
______모델의 성능 테스트
______트위터
______피처 엔지니어링 기술을 이용한 변수 도출 및 선택
__참고 문헌
__요약


8장. 앙상블 기법
__앙상블의 소개
____평준화 기법
______배깅 알고리즘을 이용
______랜덤 포레스트를 사용
____부스팅 기법 응용
______XGBoost를 이용
______스태킹 앙상블 사용
____실제 문제에 앙상블 응용
__다이내믹 애플리케이션에서 모델 사용
____모델 로버스트니스 이해
______위험 요소 모델링 파악
____모델 로버스트니스 관리 전략
__참고 문헌
__요약


9장. 파이썬 머신 러닝 관련 추가 툴
__대안 개발 툴
____라자냐 소개
______라자냐 학습
____텐서플로 소개
______텐서플로 학습
______모델을 반복적으로 향상시키기 위한 텐서플로 사용
____라이브러리 사용 시 알아둘 점
__참고 문헌
__요약

저자소개

존 하티 (지은이)    정보 더보기
디지털 회사의 컨설턴트로, 데이터 사이언스와 인프라스트럭처 엔지니어링 분야의 전문가다. 모바일 게임에서부터 미국 자동차 보험회사인 콘솔 분석에 AAA 관련된 고난도의 문제까지 다뤄왔다. 고급 머신 러닝 기술을 실제 문제에 적용하기 시작하면서 XBox 플랫폼에서 플레이어 모델링 기능과 대규모 데이터 인프라스트럭처를 개발하기 위해 마이크로소프트와 계약을 체결했다. 그가 속한 팀은 엔지니어링, 데이터 과학 분야에서 획기적인 진전을 이루며, 결과물에 대해 Microsoft Studio에서 복제해가기도 했다. 이러한 경험을 통해 결국 존은 새로운 통찰력이나 데이터에 기반을 둔 역량을 추구하는 국내외 고객을 위한 포괄적인 인프라 및 분석 솔루션을 제공하는 컨설턴트가 됐다. 그가 현재 가장 의욕적으로 수행 중인 계약 프로젝트는 주요 소셜 네트워크에 대한 예측 분석 모델을 만들고 사용자들 간의 연결 관계에 대한 중요성을 정량화하는 것이다. 수년간 데이터 작업에 몰두한 결과 존은 끊임없는 질문을 통해 궁금증을 해결하려고 한다. 개인적인 관심사를 충족시키기 위해 파이썬으로 매일매일 ML 솔루션을 개발하고 있다. 여기에는 StyleNet computational creativity 알고리즘의 파생 버전과 algo-trading 및 geolocation 기반의 추천 등을 위한 솔루션이 포함돼 있다.
펼치기
남궁영환 (옮긴이)    정보 더보기
고려대학교 컴퓨터학과, 서던캘리포니아 대학교를 거쳐 플로리다 대학교에서 데이터 마이닝을 주제로 컴퓨터공학 박사 학위를 취득했다. 삼성 SDS, 아마존 웹 서비스(AWS) 등에서 클라우드 컴퓨팅, 빅데이터 플랫폼, 데이터 과학/분석과 관련된 다양한 기술 연구/개발 과제를 수행하며 고객의 디지털 트랜스포메이션과 혁신을 돕고 있다.
펼치기

추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책