logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

스파크 2.0으로 하는 고속 스마트 빅데이터 분석과 처리 3/e

스파크 2.0으로 하는 고속 스마트 빅데이터 분석과 처리 3/e

(표준 SQL과 진화한 데이터 표현 지원)

크리슈나 산카르 (지은이), 조효성 (옮긴이)
에이콘출판
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
27,000원 -10% 0원
1,500원
25,500원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

스파크 2.0으로 하는 고속 스마트 빅데이터 분석과 처리 3/e
eBook 미리보기

책 정보

· 제목 : 스파크 2.0으로 하는 고속 스마트 빅데이터 분석과 처리 3/e (표준 SQL과 진화한 데이터 표현 지원)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 데이터베이스 프로그래밍 > SQL
· ISBN : 9791161750569
· 쪽수 : 356쪽
· 출판일 : 2017-09-22

책 소개

기능이 확장된 MLlib와 그래프 X를 이용해서 다양한 정형, 비정형 데이터를 분석할 수 있고, 특히 데이터 과학자들과 데브옵스 엔지니어가 필요할 수 있는 파큇과 같은 데이터 포맷과 필요한 데이터를 다양한 데이터 포맷으로 로딩할 수 있는 스파크 SQL 기능을 설명한다.

목차

1장. 스파크 설치와 클러스터 설정
__폴더 구조와 규약
__미리 빌드된 배포 버전 설치
__스파크 소스 빌드
____스파크 소스 다운로드
____메이븐 환경에서 스파크 소스 컴파일
____컴파일 스위치
____스파크 설치 테스트
__스파크 토폴로지
__싱글 머신
__EC2에서 스파크 구동
____EC 스크립트 다운로드
____EC2 스크립트로 EC2 환경에서 스파크 구동
____일래스틱 맵리듀스 환경에 스파크 배포
__체프(옵스코드)를 이용한 스파크 배포
__메소스 환경에서 스파크 배포
__얀 환경에서 스파크 구동
__스파크 독립 모드
__참고 자료
__요약


2장. 스파크 셸
__스파크 셸
____스파크 셸 종료
____스파크 셸을 이용한 예제 코드 실행
__단순한 텍스트 파일 로딩
__S3에서 대화 형태로 데이터 로딩
____파이썬을 이용한 스파크 셸 구동
__요약


3장. 스파크 애플리케이션 구현과 동작
__스파크 애플리케이션 구현
__아이파이썬을 이용한 데이터 랭글링
__이클립스를 이용한 스파크 개발
__기타 IDE를 이용한 스파크 개발
__메이븐을 이용한 스파크 잡 개발
__기타 개발 도구를 이용한 스파크 잡 개발
__참고 자료
__요약


4장. SparkSession객체 생성
__SparkSession과 SparkContext
__SparkSession 객체 생성
__스파크컨텍스트의 메타데이터
__공유 자바 API와 스칼라 API
__파이썬
__아이파이썬
__참고 자료
__요약


5장. 스파크의 데이터 로딩과 저장
__스파크 추상화
____RDDs
__데이터 유형
__데이터 유형과 데이터셋, 데이터프레임, RDD
__데이터를 RDD에 로딩
__데이터 저장
__참고 자료
__요약


6장. RDD 조작
__스칼라와 자바를 이용한 RDD 조작
____스칼라 RDD 메소드
____PairRDD 클래스를 조합하는 메소드
____기타 PairRDD 메소드
____더블 RDD 메소드
____범용 RDD 메소드
____자바 RDD 메소드
__파이썬을 이용한 RDD 조작
____표준 RDD 메소드
____PairRDD 메소드
__참고 자료
__요약


7장. 스파크 2.0 컨셉
__이 책의 나머지에서 다룰 코드와 데이터셋
____코드
____IDE
____아이파이썬 스타트업과 테스트
____데이터셋
__데이터 과학자와 스파크 특징
____데이터 과학자 데브옵스 실무자는 누구인가?
____데이터 레이크 아키텍처
__스파크 버전 2.0과 그 이상
__아파치 스파크: 진화
__아파치 스파크: 풀 스택
__빅데이터 저장소의 예술: 파큇
____칼럼 프로젝션과 데이터 파티션
____압축
____스마트한 데이터 스토리지와 서술 푸시다운
____스키마 진화를 위한 지원
____성능
__참고 자료
__요약


8장. 스파크 SQL
__스파크 SQL 아키텍처
__명확한 스파크 SQL 사용 방법
____스파크 2.0의 스파크 SQL
__스파크 SQL 프로그래밍
____데이터셋과 데이터프레임
____간단한 데이터 테이블에 접근할 수 있는 SQL
__참고 자료
__요약


9장. 데이터셋과 데이터프레임의 기초: 데이터 과학자를 위한 핵심 가치
__데이터셋: 간단한 소개
__데이터셋 API: 개요
____org.apache.spark.sql.SparkSession과 pyspark.sql.SparkSession
____org.apache.spark.sql.Dataset/pyspark.sql.DataFrame
____org.apache.spark.sql.{Column, Row}/pyspark.sql.(Column, Row)
____org.apache.spark.sql.functions/pyspark.sql.functions
__데이터셋 인터페이스와 메소드
____읽기/쓰기 동작
____통합 메소드
____통계 메소드
____수학 메소드
____데이터셋을 이용한 데이터 랭글링
____원하는 모든 대답을 위한 마지막 데이터 통합
__참고 자료
__요약


10장. 빅데이터를 위한 스파크
__파큇:효과적이면서 상호 운용할 수 있는 빅데이터 포맷
____파큇 포맷으로 파일 저장
____파큇 파일 로딩
____처리를 완료한 RDD를 파큇 포맷으로 저장
__HBase
____HBase에서 데이터 로딩
____데이터를 HBase에 저장
____기타 HBase 동작
__참고 자료
__요약


11장. 스파크 ML 파이프라인을 이용한 머신 러닝
__스파크의 머신 러닝 알고리즘 테이블
__스파크 머신 러닝 API: ML 파이프라인과 MLlib
__ML 파이프라인
__스파크 ML 예시
__API 알고리즘
__기본적인 통계
____데이터 로드
____통계 계산
__선형 회귀
____데이터 변환과 특징 추출
____데이터 분리
____회귀 모델을 이용한 예측
____모델 평가
__데이터 분류
____데이터 로드
____데이터 변환과 특징 추출
____데이터 분리
____회귀 모델
____회귀 모델을 이용한 예측
____모델 평가
__클러스터링
____데이터 로드
____데이터 변환과 특징 추출
____데이터 분리
____회귀 모델을 이용한 예측
____모델 평가와 해석
____모델 해석 클러스터링
__추천
____데이터 로드
____데이터 변환과 특징 추출
____데이터 분리
____모델을 이용한 예측
____모델 평가와 해석
__하이퍼 파라미터
__마지막으로 알아둘 것
__참고 자료
__요약


12장. 그래프X
__그래프와 그래프 처리 개요
__스파크 그래프X
__그래프X: 연산 모델
__첫 번째 예시:그래프
__그래프 구성
__그래프X API의 전체 구조
__구조적인 API
____출력 결과에 어떤 문제가 있는가?
__커뮤니티, 연합, 내구성
__알고리즘
____그래프 병렬 계산 API
__파티션 전략
__케이스 스터디:알파고 트윗 분석
____데이터 파이프라인
____그래프X 모델링
____그래프X처리와 알고리즘
__참고 자료
__요약

저자소개

크리슈나 산카르 (지은이)    정보 더보기
자율 주행 자동차 분야에 주력하고 있는 볼보에서 인공지능 데이터 과학자로 근무하고 있는 선임 스페셜 리스트다. 일찍이 http://cadenttech.tv에서 데이터 과학자 팀 책임자, 다국적 기업인 타타의 미국 지사에서 소프트웨어 설계 팀장 겸 데이터 과학자, 생물 정보학 관련 스타트업 회사에서 데이터 과학의 수장 역할, 그리고 시스코에서 우수한 엔지니어라는 이력을 갖고 있다. 스트라타(Strata) SJC의 ML 튜토리얼, 런던 2016, 스파크 써밋, 스트라타-스파크 캠프, 오스콘(OSCON), 파이콘(PyCon), 파이데이타(PyData), 로봇 규칙의 질서에 관한 저서, 빅데이터-Best of the Worst, NFL 예측, 스파크, 데이터 과학, 머신 러닝, 소셜 미디어 분석을 포함한 다양한 컨퍼런스에서 연사 활동을 해 왔을 뿐 아니라, 미해군 대학원에서 강사로 활동했던 적도 있다. 가끔 https://doubleclix.wordpress.com/에 다양한 기술 내용을 작성한다. 취미 활동으로 드론을 날리거나 레고 로봇을 조립하므로 세인트루이스 FLL 세계 대회의 로봇 설계 심판으로 활동하고 있는 모습을 볼 수 있다.
펼치기
조효성 (옮긴이)    정보 더보기
광운대학교 전자공학과를 졸업하고 동대학원 임베디드 소프트웨어 공학과에서 안드로이드와 블루투스를 전공했다. 과거 오비고에서 웹 개발자로 활동하고 있는 노드에 관심이 많은 행복 개발자다. 행복한 HMI WebApp 개발 팀에서 차량용 플랫폼에 올라가는 웹 앱을 개발하면서 많은 경험과 실력을 쌓았다. 현재 브라이니클에 근무하면서 서버와 클라이언트를 개발하며, 빅데이터 분석에 관심이 많고, 실제 데이터 분석 사례를 만들고 있다. 번역 작업을 통해 책을 읽는 모든 사람에게 꼭 도움이 되기를 바라는 마음을 늘 품고 있다. 에이콘출판사에서 출간한 『노드로 하는 웹 앱 테스트 자동화』(2013), 『익스프레스 프레임워크로 하는 노드 웹 앱 프로그래밍』(2014), 『Storm 실시간 빅데이터 분석 플랫폼』(2014), 『안드로이드 음성 인식 애플리케이션 개발』(2014), 『Spark로 하는 고속 빅데이터 분석과 처리』(2014), 『AngularJS 반응형 웹앱 개발과 성능 최적화』(2015), 『리액트 정복하기』(2016)를 번역했다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책