책 이미지

책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 웹 서비스/웹 프로그래밍
· ISBN : 9791161751085
· 쪽수 : 336쪽
· 출판일 : 2018-01-31
책 소개
목차
1장. 머신 러닝과 예측 분석 소개
__아마존 머신 러닝 소개
____서비스로서의 머신 러닝
____AWS 융합 활용하기
____성능 비교
____가격 책정
__예측 분석 이해
____가장 간단한 예측 분석 알고리즘 구축하기
____회귀와 분류
____로지스틱 회귀로 회귀를 분류 문제로 확장하기
____결과를 예측하기 위한 특징 추출하기
__예측을 위한 선형 모델 심화
데이터셋 검증
____아마존 머신 러닝에서 결여된 것
____통계적 접근과 머신 러닝 접근
__요약
2장. 머신 러닝 정의와 개념
__알고리즘? 모델?
__지저분한 데이터 다루기
____고전적인 데이터셋과 실제 데이터셋
____다중 분류 모델에 관한 가정
____누락값
____정규화
____불균형 데이터셋
____다중공선성 해결
____이상값 검출
____비선형 패턴 수용
____특징 추가
____전처리 요약
__예측 분석 작업 흐름
____아마존 머신 러닝에서 학습과 평가
__저품질 인지와 수정
____언더피팅
____오버피팅
____선형 모델에 관한 정규화
____모델의 성능 평가
__요약
3장. 아마존 머신 러닝 워크플로 개요
__AWS 계정 만들기
____보안
__계정 설정하기
____유저 생성
____정책 정하기
____로그인 크리덴셜 생성
__표준 아마존 머신 러닝 워크플로 개요
____데이터셋
__모델
__모델 평가
__배치 예측 만들기
__요약
4장. 데이터셋 준비하기
__데이터셋으로 작업하기
____공개 데이터셋 찾기
____타이타닉 데이터셋 소개
__데이터 준비
____데이터 나누기
____데이터를 S3에 올리기
__데이터 소스 만들기
____데이터 스키마 확인
____스키마 재사용
__데이터 통계 진단
__아테나와 특징 공학
____아테나 소개
____타이타닉 데이터셋 만들기
__SQL로 데이터 가공하기
____누락값
____개선된 데이터 소스 만들기
__요약
5장. 모델 생성
__레시피로 데이터 변환하기
____변수 관리
____일곱 가지 변환을 통한 데이터 처리
__모델 만들기
____제안된 레시피 편집하기
____모델의 매개변수화
__평가 생성하기
____모델 평가하기
__로그 분석
____학습률 최적화
__요약
6장. 예측과 성능
__배치 예측 만들기
____배치 예측 작업 만들기
____예측 결과 해석하기
__실시간 예측 만들기
____수작업으로 변수의 영향 조사
____실시간 예측 설정
__요약
7장. 명령행과 SDK
__시작과 설정
____CLI vs SDK 사용하기
____AWS CLI 설치
____CLI 구문 가져오기
____JSON 파일을 이용해 파라미터 전달하기
____Ames Housing 데이터셋 소개
____쉘 명령으로 데이터셋 분리하기
__CLI를 사용하는 간단한 프로젝트
____아마존 머신 러닝 CLI 명령 개요
____데이터 소스 만들기
____모델 만들기
____create-evaluation 명령으로 모델 평가하기
____교차 유효성 검증이란?
____몬테 카를로 교차 유효성 검증 구현하기
____결론
__Boto3, the Python SDK
____아마존 머신 러닝을 위한 Python SDK로 작업하기
____Boto3로 반복적 특징 선택 구현하기
__요약
8장. 레드시프트에서 데이터 소스 만들기
__RDS와 레드시프트 중에서 선택
____레드시프트 인스턴스 만들기
____Psql로 레드시프트 질의 실행하기
____비선형 데이터셋 만들기
__다항회귀 소개
____기준선 정하기
__아마존 머신 러닝에서 다항회귀
____Python에서 실험하기
____결과 해석하기
__요약
9장. 실시간 데이터 분석 파이프라인 구축하기
__실시간 트위터 감성 분석
____트위터의 인기 콘테스트
____데이터셋과 모델 훈련하기
____키네시스
____트윗 수집하기
____레드시프트 데이터베이스
____Redshfit를 키네시스 Firehose에 더하기
____Lambda로 전처리하기
____결과 분석하기
__분류와 회귀를 넘어서
__요약